CSE 333 - SECTION 7

C++ Virtual Functions and Client-Side
Network Programming

Overview

Virtual functions summary and worksheet
Domain Name Service (DNS)

Client side network programming steps and calls
dig and ncat tools

C++ virtual functions

- Dynamic dispatch — decide at runtime what code to invoke
- “Most derived” function gets called
- The virtual keyword is sticky

- viable
- Function pointers to each virtual function of the class

- Pointers to “most derived” function for that class
- vptr — virtual table pointer for each object instance

Section Exercise 1 (5 min)

Virtual functions worksheet

Network Programming

Application
Presentation

Session

Transport

Network

Data

Application

Presentation

Session

Transport

Network

Data

v Physical

Sender
OSI model

Physical

Receiver

Berkeley/POSIX Sockets API

What is a socket?
Endpoint or an interface for sending and receiving data at a node

You can use read() and write() to send and receive data

The socket() system call creates a socket and returns a
file descriptor

OS’ s descriptor table

file
?
descriptor type connected to*

Pictorially

128.95.4.33

Web server

fdd5 fd8 fd9 fd3

80 |80

3 TCP local: 128.95.4.33:80
socket remote: 44.1.19.32:7113
B N T

TCP local: 128.95.4.33:80
socket remote; 10.12.3.4:5544

-

"~ Internet

|client |client
10.12.3.4 : 5544 44.1.19.32: 7113

pic.png «—*

index.htm| «——

Network programming for the client side

The five steps to communicate with a server:
Domain name lookup to figure out IP address and port to talk to
Create a socket
Connect to the server
Read and Write to transfer data through the socket
Close the socket

Network Addresses

- For IPv4, an IP address is a 4-byte tuple
- -e.g., 128.95.4.1 (80:51:04:01 in hex)

- For IPv6, an IP address is a 16-byte tuple
- -e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33

- » 2d01:0db8:f188::1f33 in shorthand

DNS — Domain Name System/Service

- A hierarchical distributed naming system any resource
connected to the Internet or a private network.

- Resolves queries for names into IP addresses.

- The sockets API lets you convert between the two.
- Aside: getnameinfo() is the inverse of getaddrinfo()

- Is on the application layer on the Internet protocol suite.

U
Dig demo

dig +trace attu.cs.washington.edu

Resolving DNS names

- The POSIX way is to use getaddrinfo().

- Set up a “hints” structure with constraints, e.g. IPv6, IPv4,
or either.

- Tell getaddrinfo() which host and port you want resolved.
- Host - a string representation: DNS name or IP address

- getaddrinfo() gives you a list of results in an “addrinfo”
struct.

IPv4 address structures

// Port numbers and addresses are in *network order*.

// A mostly-protocol-independent address structure.

struct sockaddr {
short int sa family; // Address family; AF INET, AF_ INET6
char sa data[l14]; // 14 bytes of protocol address

}i

// An IPv4 specific address structure.
struct sockaddr in {

short int sin family; // Address family, AF INET == IPv4
unsigned short int sin port; // Port number

struct in addr sin addr; // Internet address

unsigned char sin zero[8]; // Same size as struct sockaddr

};

struct in_addr ({
uint32 t s addr; // IPv4 address
};

|Pv6 address structures

// A structure big enough to hold either IPv4 or IPv6 structures.
struct sockaddr storage {

sa family t ss_ family; // address family
// a bunch of padding; safe to ignore it.
char __ss_padl[_SS PADISIZE];

int64 t _ ss align;

char __ss pad2[_ SS PAD2SIZE];

i
// An IPv6 specific address structure.
struct sockaddr in6 {

u_intlé_t sin6 family; // address family, AF INET6
u_intlé_t sin6_port; // Port number

u int32 t sin6 flowinfo; // IPvée flow information
struct in6é_addr sin6_addr; // IPv6 address

u int32 t sin6_scope id; // Scope ID

};
struct in6_addr ({

unsigned char s6_addr[16]; // IPv6é address
};

getaddrinfo() and

int getaddrinfo(const char *hostname,
const char *servname,

structures

// hostname to look up
// service name

const struct addrinfo *hints, // desired output type
struct addrinfo **res); // result structure

// Hints and results take the same form. Hints are optional.

struct addrinfo {

int ai flags; //
int ai:family; //
int ai_socktype; //
int ai_protocol; //
size t ai_addrlen; //
struct sockaddr *ai addr; //

char *ai canonname; //
struct addrinfo *ai next; //

};

Indicate options to the function
AF INET, AF _INET6, or AF_UNSPEC
Socket type, (use SOCK_ STREAM)
Protocol type

INET ADDRSTRLEN, INET 6_ADDRS TRLEN
Address (input to inet ntop)
canonical name for the host

Next element (It’s a linked list)

// Converts an address from network format to presentation format

const char *inet ntop(int af,

// family (see above)

const void * restrict src, // in_addr or in6_ addr
char * restrict dest, // return buffer

socklen t size);

// length of buffer

Generating these structures

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) ({
struct sockaddr in sa; // IPv4
struct sockaddr in6é sa6; // IPvé6

// IPv4 string to sockaddr in.
inet pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr in6.
inet pton(AF INET6, "2001:db8:63b3:1::3490", &(sa6.sin6 addr));
return EXIT SUCCESS;

Generating these structures

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr iné6 sa6; // IPvé6
char astring[INET6 ADDRSTRLEN]; // IPvé6

// IPv6é string to sockaddr in6.
inet pton (AF _INET6, "2001:db8:63b3:1::3490", &(sa6.sin6 _addr));

// sockaddr in6é to IPv6 string.
inet ntop (AF_INET6, &(sa6.sin6 addr), astring, INET6 ADDRSTRLEN) ;
printf (“$s\n”, astring);

EXIT SUCCESS;

DNS Resolution Demo

dnsresolve.cc

Network programming for the client side

Recall the five steps, here are the corresponding calls:
1. getaddrinfo() to figure out IP address and port to talk to
2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

Network programming for the client side

- Recall the five steps, here’s the corresponding calls:
1. getaddrinfo() to figure out IP address and port to talk to
2. socket() for creating a socket
3. connect() to connect to the server
4. read() and write() to transfer data through the socket
5. close() to close the socket

socket() — Create the socket

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, // e.g. AF NET, AF NET6
int type, // e.g. SOCK STREAM, SOCK DGRAM
int protocol); // Usually O

Note that socket() just creates a socket, it isn't bound yet to
a local address.

Demo

socket.cc

Network programming for the client side

- Recall the five steps, here’s the corresponding calls:
1. getaddrinfo() to figure out IP address and port to talk to
2. socket() for creating a socket
3. connect() to connect to the server
4. read() and write() to transfer data through the socket
5. close() to close the socket

connect() — Establish the connection

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, // socket fd from step 2
struct sockaddr *serv addr, // server info
// from step 1

int addrlen); // size of serv addr struct

Demo (Along with ncat demo)

connect.cc
(nc —Iv 5454 to create listener)

Network programming for the client side

Recall the five steps, here’s the corresponding calls:
getaddrinfo() to figure out IP address and port to talk to
socket() for creating a socket
connect() to connect to the server
read() and write() to transfer data through the socket
close() to close the socket

read() and write()

By default, both are blocking calls

read() will wait for some data to arrive, then immediately
read whatever data has been received by the network
stack

Might return less data read than asked for

Blocks while data isn't received

Conversely, write() queues your data to OS’s send buffer,
then returns while OS does the rest in the background

When write returns the receiver probably hasn’t received the data
yet
When the send buffer fills up, write() will also block

Demo (Along with more ncat)

sendreceive.cc
(nc —| 5454 to create listener)

Network programming for the client side

Recall the five steps, here’s the corresponding calls:
getaddrinfo() to figure out IP address and port to talk to
socket() for creating a socket
connect() to connect to the server
read() and write() to transfer data through the socket
close() to close the socket

close() — Close the connection

#include <unistd.h>

int close(int sockfd) ;

Remember to close the socket when you're done!

Network programming for the client side

Recall the five steps, here’s the corresponding calls:
getaddrinfo() to figure out IP address and port to talk to
socket() for creating a socket
connect() to connect to the server
read() and write() to transfer data through the socket
close() to close the socket

Section Exercise

The TA has set up a game server for you to communicate
with (gameserver.py)

Using the sample client code from section/lecture and
what you know about I/O calls in C++, your job is to
implement a C++ client called gameclient.cc such that you
can communicate with the game server much like you can
with the netcat tool

