
CSE 333 – SECTION 4
C++ References, const and classes

Reminders
• HW2 due Thursday, 20th July
• Midterm on Monday, the 24th
• Review session, Sunday, the 23rd at 1pm in EEB 045

This or that?
• Consider the following code:
Pointers: References:
int i; int i;
int *pi = &i; int &ri = i;

In both cases,

The difference lies in how they are used in expressions:
 *pi = 4; ri = 4;

References Example
// Part 1
int i = 0, j = 4;
int *pi = &i;

// Part 2
int &ri = i;

// Part 3
*pi = 3;

// Part 4
 ri = j;

Pointers and References
• Once a reference is created, it cannot be later made to

reference another object.
•  Compare to pointers, which are often reassigned.

• References can’t be initialized to null, whereas pointers
can.

• References can never be uninitialized. It is also
impossible to reinitialize a reference.

• Demo: experiments.cc

C++ const declaration
• As a declaration specifier, const is a type specifier that

makes objects unmodifiable.
 const int m = 255;

• Reference to constant integer:
 int n = 100;
 const int &ri = n; // ri becomes read only

• Demo: const.cc

When to use?
• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from
one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its
lifetime.

• Style Guide Tip:
•  use const reference parameters to pass input
•  use pointers to pass output parameters
•  input parameters first, then output parameters last

C++ Classes
/* Note: This code is unfinished! Beware! */ !
class Point { !
public: !
 Point(const int x, const int y); // constructor!
 int get_x() const { return x_; } // inline member function !
 int get_y() const { return y_; } // inline member function !
 double distance(const Point &p) const; // member function !
 void setLocation(const int x, const int y); //member function !
private: !
 int x_; // data member !
 int y_; // data member !
}; // class Point !

C++ Constructors/Destructors
• Default constructor
• Parameterized constructor
• Copy Constructor

• Destructors
•  Special member functions called to free resources held by the

object.
•  Syntax: ~class_name();

Assignment vs Copy Constructor
• Copy constructor is called when a new object is created

from an existing object.
• Assignment operator is called on an already initialized

object.

Test t2;
//calls default constructor

t2=t1;
//calls assignment operator, same as t2.operator=(t1)

Test t3 = t1;
//calls copy constructor, same as Test t3(t1)

Complex example
• Code Review and Demo: complex_example (lec11-code)
• Note the friend functions
•  Friend functions are

•  NOT member functions
•  declared within a class definition with keyword friend
•  have the right to access private and protected members of the

class

Section Exercise
• Define a class Rectangle whose instance variables are a

pair of Point objects (upper left, lower right).
•  Include at least one constructor. Make sure you get const

right in the right places.
• Methods:

•  getul(), getlr() - returns upper and lower points.
•  intersect(Rectangle &r) – returns a Rectangle representing the

overlap.
•  area() - returns the Rectangle's area.
•  contains(Point &p) - returns true or false depending on whether

point p is inside the rectangle.
•  The C++ Primer text and cplusplus.com contain good

reference material.

