
CSE 333 – SECTION 3
POSIX I/O Functions

Administrivia

• Questions (?)

• HW1 Due Tonight
• HW2 Due Thursday July 20th
• Midterm on Monday, July 24th

•  (And regular exercises in between)

POSIX
•  Family of standards specified by the IEEE
• Maintains compatibility across variants of Unix-like OS
• Defines API and standards for basic I/O: file, terminal and

network
• Also defines a standard threading library API

Basic File Operations
• Open the file
• Read from the file
• Write to the file
• Close the file / free up resources

System I/O Calls
int	open(char*	filename,	int	flags,	mode_t	mode);	

Returns an integer which is the file descriptor.
Returns -1 if there is a failure.

filename: A string representing the name of the file.
flags: An integer code describing the access.

 O_RDONLY -- opens file for read only
 O_WRONLY – opens file for write only
 O_RDWR – opens file for reading and writing
 O_APPEND --- opens the file for appending
 O_CREAT -- creates the file if it does not exist
 O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.

[man 2 open]

System I/O Calls
ssize_t	read(int	fd,	void	*buf,	size_t	count);		
ssize_t	write(int	fd,	const	void	*buf,	size_t	count);	

fd: file descriptor.
buf: address of a memory area into which the data is read.
count: the maximum amount of data to read from the stream.
The return value is the actual amount of data read from the file.

int	close(int	fd);		
Returns 0 on success, -1 on failure.

[man 2 read]
[man 2 write]
[man 2 close]

Errors
•  When an error occurs, the error number is stored in errno,

which is defined under <errno.h> !
•  View/Print details of the error using perror() and errno.
•  POSIX functions have a variety of error codes to represent

different errors. Some common error conditions:
•  EBADF - fd is not a valid file descriptor or is not open for reading.
•  EFAULT - buf is outside your accessible address space.
•  EINTR - The call was interrupted by a signal before any data was

read.
•  EISDIR - fd refers to a directory.

•  errno is shared by all library functions and overwritten
frequently, so you must read it right after an error to be sure of
getting the right code

[man 3 errno]
[man 3 perror]

Reading a file
#include	<errno.h>	
#include	<unistd.h>	
	
...	
			
		char	*buf	=	...;					//	buffer	has	size	n	
		int	bytes_left	=	n;		//	where	n	is	the	length	of	file	in	bytes	
		int	result	=	0;	
	
		while	(bytes_left	>	0)	{	
					result	=	read(fd,	buf	+	(n-bytes_left),	bytes_left);	
					if	(result	==	-1)	{	
							if	(errno	!=	EINTR)	{	
								//	a	real	error	happened,	return	an	error	result	
							}	
							//	EINTR	happened,	do	nothing	and	loop	back	around	
							continue;	
					}	
					bytes_left	-=	result;	
		}	

Again, why are we learning POSIX
functions?
•  They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.

• More explicit control since read and write functions are
system calls and you can directly access system
resources.

•  There is no standard higher level API for network and
other I/O devices.

STDIO vs. POSIX Functions
• User mode vs. Kernel mode.

•  STDIO library functions
 – fopen, fread, fwrite, fclose, etc.
 use FILE* pointers.

•  POSIX functions
 – open, read, write, close, etc.
 use integer file descriptors.

Directories
• Accessing directories:

•  Open a directory
•  Iterate through its contents
•  Close the directory

• Opening a directory:
DIR *opendir(const char* name); !

•  Opens a directory given by name and provides a pointer DIR* to
access files within the directory.

• Don’t forget to close the directory when done:
int closedir(DIR *dirp); !

[man 0P dirent.h]

[man 3 opendir]
[man 3 closedir]

Directories
•  Reading a directory file.

struct dirent *readdir(DIR *dirp); !
!
struct dirent { !
 ino_t d_ino; /* inode number for the dir entry */ !
 off_t d_off; /* not necessarily an offset */ !
 unsigned short d_reclen; /* length of this record */ !
 unsigned char d_type; /* type of file (not what you think); !
 not supported by all file system types */ !
 char d_name[NAME_MAX+1] ; /* directory entry name */ !
}; !

[man 3 readdir]
[man readdir]

Read the man pages
• man, section 2: Linux system calls
•  man 2 intro
•  man 2 syscalls
•  man 2 open
•  man 2 read

•  …
• man, section 3: glibc / libc library functions
•  man 3 intro
•  man 3 fopen
•  man 3 fread
•  man 3 stdio for a full list of functions declared in <stdio.h>

•  …

Section Exercises 1 & 2
Find a partner if you wish.

1. Write a C program that given a directory:
•  Prints the names of the entries to stdout
•  Analogous to the bash command ls

2. Write a C program that given a filename:
•  Prints the contents of the file to stdout
•  Analogous to the bash command cat

You must use POSIX functions! And handle any
errors! :)

