CoE 333

Lecture 20 - intro to concurrency

Hal Perkins
Department of Computer Science & Engineering
University of Washington

S
Q

CSES3383 lec 20 concurrenc y // 07-09-17 // Perkins

Administrivia

HW4 due in a week, 11 pm Wed. w/usual late days
» How’s it going?
» Remember: no changes allowed in header files, Makefile, or specifications.

Reminder: watch your late days! (4 max per quarter, 2 max per
hw assignment, none for exercises)

- Check the “late days remaining” entry in the gradebook
Section tomorrow: pthreads tutorial

- Last exercise posted tomorrow, due next Monday: pthreads
Final exam a week from Friday In class

- Review in section next week
CSES333 lec 20 concurrency // 07-09-17 // Perkins

(Goals

Understand concurrency

- why it Is useful

- why it Is hard

Exposure to concurrent programming styles
- using multiple threads or multiple processes

- using asynchronous or non-blocking 1/0O

» “event-driven programming”

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Let’s Imagine you want to...

...bulld a web search engine.

- you need a Web index

» an inverted index (a map from “word” to “list of documents
containing the word”)

» probably sharded over multiple files

- a query processor
» accepts a query composed of multiple words
» looks up each word In the index

» merges the result from each word into an overall result set

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Architecturally

iNndex
file

iIndex
file

query
processor

iIndex
file

#| client
si52t ¥ | client
oyesssseessacss
4753
ittt betats > client
A
‘s ~~~~~
A client
*1 client

CSES333 lec 20 concurrency // 07-09-17 // Perkins

A sequential Implementation

4 %
doclist Lookup(string word) {

bucket = hash (word) ;

hitlist = file.read (bucket);

foreach hit in hitlist {
doclist.append(file.read(hit));

}

return doclist;

}

main () {
while (1) {
string query words[] GetNextQuery () ;
results = Lookup (query words[0]);
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;

}
Display (results) ;
}
}

b _/
LSS

7 // Perkins

Visually

()AxzonpaxsN3=D

O/I YaIomiau

()AeTdsTQ
()saTnsay 3o09sisajurl

O/I ¥STP

()pesx-a1TZ
()dn3oorT

O/I ¥STP

()peax-aTT3
()dn3oorT

0/I 3STP

()pesx-a1T3
()dnxoorT

0/I >Iomiau

() AxondaxoN1oD
()uteuw

I I I R R R R R R R R R R RN 2

time

query

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Simplifying

5°¢ Ndo
BRoRG it
™M
5°¢ nad | §
e,
L%
R o A
e € Nao
5°Z Ndo
BEZRO /T
Al
'z Ndo [
2,
@)
gEaR0 it
®°Zz Nao
5°1 Ndo
BRSO T
ST)
gRRo ot
e 1 nao

query 1

S R I e R R R R R I e R R R R TR ERE 2

time

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Simplifying

only one |/O request

G Q O o) Q
at a time is in flight ™ ™ ™ ™ e
the CPU is idle \ 4 H 0 F
¢ @) H @) H @
most of the time
ru Q 4} o) query 3
(Q\] (Q\] (Q\] (Q\) (QV
- @) - @) -
Ay R Ay ~ Ay
@) H @) H @)
rcs Q 4 o) query 2
— — — — — \
D e D o = : , !
5 e 5 > 3 queries don’t run until
earlier queries finish
query 1
..)
time

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Sequentiality can be inefficient

Only one query is being processed at a time

- all other queries queue up behind the first one

The CPU is idle most of the time
- it is “blocked” waiting for I/O to complete
» disk /O can be very, very slow
At most one I/O operation is in flight at a time

- misses opportunities to speed I/0O up

» separate devices in parallel, better scheduling of single device, ...

CSES333 lec 20 concurrenc y // 07-09-17 // Perkins

What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

- It could execute multiple queries at the same time
» while one is waiting for I/O, another can be executing on the CPU

- or, It could execute queries one at a time, but issue
I/0 requests against different files/disks simultaneously

» |t could read from several different index files at once, processing the
/O results as they arrive

Concurrency = parallelism

- parallelism is when multiple CPUs work simultaneously on 1 job

CSES333 lec 20 concurrency // 07-09-17 // Perkins

One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread (or process) to handle it

» the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

» the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on /O

- the OS context switches between threads / processes

» while one is blocked on I/O, another can use the CPU

» multiple threads’ /O requests can be issued at once

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Multithreaded pseudocode

main() {
while (1) {
string query words[] = GetNextQuery()

ForkThread (ProcessQuery()) ;

}
}
N v,

doclist Lookup (string word) ({
bucket = hash (word) ;
hitlist = file.read(bucket) ;
foreach hit in hitlist
doclist.append(file.read(hit)) ;
return doclist;

}

ProcessQuery () ({
results = Lookup (query words[0]);
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;
}
Display(results) ;
}

- Ay /1 07-09-17 // Perkins

ly

- visua

Multithreaded

°°¢ NdO

pP°€ O/I

°9°¢ NdO

Q°¢ NdO

q*¢€ 0/I

P*Z O/I

°°T NdD

O*¢Z NdO

e*¢ NdO

query 3

q*Z 0/I

P°T O/I

O°T NdD

e*Z Ndo

query 2

q°*T 0O/I

e*T NdO

query T

LR R I T B B R R R R R R R R R 2

time

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Whither threads”?

Advantages
- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- If your threads share data, need locks or other synchronization
» very bug-prone and difficult to debug

- threads can introduce overhead

» lock contention, context switch overhead, and other issues

- need language support for threads

CSES333 lec 20 concurrenc y // 07-09-17 // Perkins

One alternative

Fork processes instead of threads

- advantages:

» NO shared memory between processes, so No need to worry about
concurrent accesses to shared variables / data structures

» Nno need for language support; OS provides “fork”
- disadvantages:
» more overhead than threads to create, context switch

» cannot easily share memory between processes, so typically share
through the file system

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Another alternative

Use asynchronous or non-blocking |/O
- your program lbegins processing a query

» when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

» the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

» when data becomes available, the OS lets your program know

- your program (almost never) blocks on 1/O

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Event-driven programming

Your program Is structured as an event-loop

- 5

void dispatch(task, event) {
switch (task.state) {

case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]);
task.state = READING FROM INDEX;
return;

case READING FROM INDEX:
FRtetey

}
}

while (1) {
event = OS.GetNextEvent();
task = lookup (event) ;
dispatch (task, event);

}
%

/
CSE333Tec 20 concurrency // 07-09-17 // Perkins

Asynchronous, event-driven

R S0 £

q*¢€ 0/I

&
=
=
®°¢ Ndd
SRR
9°z Ndd
®°T Ndd
DRAR0 T
PRI o c ndo
0z Ndd
0°1 Ndd
q:z 0/I
q9°T 0/I
BRI
PR TRNdD

S R R R R PP E. 2

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Non-blocking vs. asynchronous

Non-blocking I/0O (network, console)
- your program enables non-blocking 1/0O on its fd’s
- your program issues read(), write() system calls
» if the read/write would block, the system call returns immediately
- program can ask the OS which fd’s are readable/writeable
» program can choose to block while no fds are ready

Asynchronous 1/O (disk)
- program tells the OS to begin reading / writing

» the “begin_read” or “begin_write” returns immediately

» when the I/O completes, OS delivers an event to the program

CSES333 lec 20 concurrenc y // 07-09-17 // Perkins

Why the difference’?

Non-blocking I/O is for networks
- according to Linux, the disk never blocks your program
» it just delays it
- but, reading from the network can truly block your program
» aremote computer may wait arbitrarily long before sending data
Asynchronous I/O is for files

- primarily used to hide disk latency
» asynchronous I/O system calls are messy and complicated :(

» instead, typically use a threadpool to emulate asynchronous 1/0O

CSES333 lec 20 concurrency // 07-09-17 // Perkins

Whither events?

Advantages
- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

» one event handler for each Ul event

Disadvantages

- can lead to very complex structure for programs that do lots of
disk and network /O

» sequential code gets broken up into a jJumble of small event handlers

» you have to package up all task state between handlers

CSES333 lec 20 concurrency // 07-09-17 // Perkins

One way to think about it

Threaded code;

- each thread executes its task sequentially, and per-task state
IS naturally stored in the thread’s stack

- OS and thread scheduler switch between threads for you
Event-driven code:
- *you™ are the scheduler

- you have to bundle up task state into continuations; tasks do
not have their own stacks

CSES333 lec 20 concurrenc y // 07-09-17 // Perkins

See you on Friday!

CSES333 lec 20 concurrency // 07-09-17 // Perkins

