
 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 1 of 8

Question 1. (10 points) Preprocessor. Suppose we have the following two files:

defs.h:

#define DIV(a,b) a / b

#define INCDIV(c,d) DIV(c + 1, d + 1)

main.c:

#include <stdio.h>

#include "defs.h"

int main() {

 int n = INCDIV(5, 1);

 printf("%d\n", n);

 return 0;

}

(a) (7 points) Show the result produced by the C preprocessor when it processes file
main.c (i.e., if we were compiling this file, what output would the preprocessor send to
the C compiler that actually translates the program to machine code?). You should
ignore the #include <stdio.h> directive since that includes library declarations
that we do not have access to. Write the rest of the preprocessor output below.

int main() {

 int n = 5 + 1 / 1 + 1;

 printf("%d\n", n);

 return 0;

}

(b) (3 points) What output does this program print when it is executed?

 7

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 2 of 8

Make and related things. We have the following diagram that describes the dependencies
between the various files that are involved in building an executable program named
gadget.

Question 2. (9 points, 3 each) What can we conclude from the above diagram? In the
statements below, circle the number of the best choice in each group of possible answers:

(a) The widget.c source file:

(i) Definitely contains a #include "widget.h" preprocessor directive.

(ii) Might contain a #include "widget.h" preprocessor directive, but might

not.

(iii) Does not contains a #include "widget.h" preprocessor directive.

(b) The gadget.c source file:

(i) Definitely contains a #include "widget.h" preprocessor directive.

(ii) Might contain a #include "widget.h" preprocessor directive, but might

not. (gadget.h might #include widget.h to create the dependency.)

(iii) Does not contains a #include "widget.h" preprocessor directive.

(c) The main function for this program:

(i) Definitely is implemented (defined) in the gadget.c source file.

(ii) Might be implemented (defined) in the gadget.c source file, but might not.

(iii) Is not implemented (defined) in the gadget.c source file.

(more about this diagram on the next page)

widget.c	 widget.h	 gadget.h	 gadget.c	

widget.o	 gadget.o	

gadget	

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 3 of 8

Question 3. (17 points) Making stuff. Write an appropriate Makefile that will compile
and link the files described by the dependency diagram on the previous page to build the
executable program named gadget. Your Makefile should only recompile or relink
files if needed to bring targets up to date. The default target in the Makefile should be
the executable program gadget, i.e., if make is run with no arguments, the gadget
program (target) should be built.

You should use gcc with appropriate options to compile the program. To save a little
time and writing, you may omit -std=c11, but you should include -Wall and -g in
appropriate places. In addition, you may find the following options to be useful:

• -o outputfilename – specify gcc output file
• -c – only create a .o file and then stop without linking. (If -c is given, then the

option -o filename.o is assumed as the default, where filename.c is the input file.)

Reminder: the format of a makefile rule is:
 target: sources
 command

gadget: widget.o gadget.o

 gcc –Wall –g –o gadget widget.o gadget.o

widget.o: widget.c widget.h

 gcc –Wall –g –c widget.c

gadget.o: gadget.c gadget.h widget.h

 gcc –Wall –g –c gadget.c

Note: This solution is about the minimum possible. Solutions that included other
features like –o options or Makefile variables did, of course, receive full credit if
those features were used properly.

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 4 of 8

Question 4. (22 points) C programming! This question involves adding a function to the
code from HW2. Copies of the HashTable.h and memindex.h header files, which
are the ones needed for this problem, are provided on separate pages. You should assume
that those headers, and any other necessary header files and declarations, have already
been included in the source files.

After building the inverted index data structures in HW2, we would like to scan the index
and, for each word we find, print out the number of different documents where the word
appears. For example, here is the inverted index diagram from the HW2 assignment:

The output of the function should list each word in the inverted index and the number of
documents where it appears, using a separate line for each word. For the above data the
output might be:

 recommend 1
 love 3
 course 1

The words may appear in any order, and the exact spacing doesn’t matter. The output
should be written to stdout (i.e., feel free to use printf). On the next page,
implement function PrintWordDocCounts to produce this output.

(Hint: Don’t panic! The solution isn’t particularly long – the sample solution is less than
15 or 20 lines of code. Of course, yours isn’t required to be any particular length.)

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 5 of 8

Question 4. (cont.) Write your implementation of function PrintWordDocCounts
below.

// For each word in MemIndex mi, print on stdout a line
// containing that word and the number of documents where
// it appears.

void PrintWordDocCounts(MemIndex mi) {
 Verify333(mi != NULL);
 // add your code here

 HTIter iter = HashTableMakeIterator(mi);

 while (!HTIteratorPastEnd(iter)) {

 HTKeyValue kv;

 int res = HTIteratorGet(iter, &kv);

 if (res) {

 WordDocSet *wds = (WordDocSet *) kv.value;

 char *word = wds->word;

 int count = NumElementsInHashTable(wds->docIDs);

 printf("%s: %d\n", word, count);

 }

 HTIteratorNext(iter);

 }

 HTIteratorFree(iter);

}

Grading note: There were a few solutions that processed the hash table by calling
HTIteratorNext repeatedly until the number of calls matched the table size, without
actually using HTIteratorPastEnd. We allowed this on the exam without deducting
points, but it is poor style since it mixes a counting loop with an iterator. It would
be much better to use the iterator interface by itself.

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 6 of 8

Question 5. (20 points) Bugs ‘R Us. One of your friends has been trying to learn C and
has been experimenting with a linked list of strings, using dynamically allocated nodes
and string values. The list allows duplicates and strings are not stored in any particular
order. The problem is that the code is badly broken, and, in fact, doesn’t even compile.

Make changes needed in the code below so that function new_node allocates a properly
initialized new node and insert successfully adds it to the front of the list. If you want
to rewrite the code instead of modifying it here, you can use the next page.

(Sample solution given below as additions and changes in bold green type. The
main bugs are missing dynamic allocation for strings and nodes. Given that this is
an exam question we did not require full error checking of malloc results as would
be done in production code.)

#include <stdlib.h>

#include <string.h> // needed for strlen, strcpy

struct strnode { // node in a string linked list:
 char * str; // copy of the string (on the heap)
 struct strnode * next; // next node or NULL if none
};
struct strnode * str_list; // global pointer to list of strings

// return a new node with copy of string s and next == NULL

struct strnode * new_node(char * s) {

 struct strnode * node;

 node = (struct strnode *)malloc(sizeof(strut strnode));

 node->str = (char *)malloc((strlen(s)+1);

 strcpy(node->str, s);

 node->next = NULL;

 return node;

}

// add a new node with a copy of s to the front of str_list

void insert(char * s) {

 struct strnode * p = new_node(s); // ‘*’ missing in decl.

 p->next = str_list; // order of these 2 lines reversed

 str_list = p;

}

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 7 of 8

Question 6. (20 points) Not quite the traditional what-does-it-print question. Consider
the following C++ program, which, as is usual, compiles and executes with no errors.

#include <iostream>
using namespace std;

int f(int &n, int *pa, int &k, int *pb) {
 k = pb[1];
 pb[2] = pa[1];
 n = *pb**pa;
 return k+1;
}

int main() {
 int a = 1;
 int &b = a;
 int ray[4] = { 10, 11, 12, 13 };
 int *p = ray;
 int *q = &ray[1];

 *p = f(ray[2], p, b, q);

 cout<< "a = " << a << ", b = " << b << ", *q = " << *q << endl;
 cout<< "ray = ";
 for (int k = 0; k < 4; k++)
 cout << ray[k] << " ";
 cout << endl;

 return 0;
}

What output does this program produce when it runs? (You are not required to draw a
boxes-n-arrows diagram, but you might find doing so to be very helpful, and it might
help us if we need to assign partial credit to a not-completely-perfect answer.)

a = 12, b = 12, *q = 11

ray = 13 11 110 11

 CSE 333 Midterm Exam 7/25/16 Sample Solution

 Page 8 of 8

Question 7. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there’s something written here. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t here?

Implement a C++ compiler. Be sure to include all library functions and templates
plus a complete set of tests for all of your code.

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 None of the above. My answer is Sure, why not? .

