
 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 1 of 13

Question 1. (18 points) A bit of C++ coding. In this problem we would like to
implement parts of an inverted document index related to, but (much) simpler than, the
project code we built this quarter. We also want to take advantage of the standard C++
libraries. After describing the data structure, this problem will ask you to implement two
functions.

We want a data structure that stores all of the words found in a collection of documents
and, for each word, the name(s) of the documents where that word appears one or more
times. So, for instance, if we had the following two documents and the words contained
in them:

 “Hamlet” “to be or not to be”
 “Strangers” “do be do be do”

we would like to create a table that looks like this in part:

“to” “Hamlet”
“be” “Hamlet” “Strangers”
“or” “Hamlet”
…

In other words, what we want is a map of <key, value> pairs, where each key is a word
(a string) contained in one or more documents, and each value is a set of document names
(a set of strings).

This data structure can be defined directly in C++ using the following definition to create
a type WordTable with the above structure:

typedef map<string, set<string>> WordTable;

On the next pages, implement two functions: one to add information to a WordTable
and the other to print a formatted listing of a WordTable.

Don’t be alarmed if your answers are quite short. There are solutions to both problems
that require only a few lines of code. We’ve put each part of the problem on a separate
page to leave way more than enough room for your answers.

(You may remove this page from the exam if you wish.)

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 2 of 13

Question 1. (cont.) Implement the following functions.
(a) (8 points) Given a document name doc (e.g., “Hamlet”), and a list of words words
(e.g., { “to”, “be”, “or”, “not”, “to”, “be”}), add entries to table as needed to record
that those words appear in that document. Do not change any of the strings or attempt to
discover if the same word is stored in the table more than once with different
capitalization. (i.e., use the strings exactly as provided and don’t attempt to convert them
to lower-case or something.)

void AddDocWordList(const string doc,
 const vector<string> &words,
 WordTable &table) {
 for (auto &w: words) {
 table[w].insert(doc);
 }
}

There are obviously many, many possible solutions. This one is extremely concise,
but any other correct solution received full credit.

(b) (10 points) Given a WordTable table, write the contents of the table to cout
with the following format: there should be one line for each word that appears as a key in
the table. Each output line should consist of that word (key) followed by a colon,
followed by a list of the documents names that contain that word (i.e., the contents of the
associated set of strings), separated by spaces. The output for our example would include
the following two lines, among others:

 be: Hamlet Stranger
 not: Hamlet

The words and the lists of documents containing each word may be printed in any order.
You should print the strings as-is and not attempt to capitalize or modify them in any
way.

void PrintWordTable(WordTable &table) {
 for (const auto & kv: table) {
 cout << kv.first << ":";
 for (const auto & docname : kv.second) {
 cout << " " << docname;
 }
 cout << endl;
 }
}

Again, there are many possible solutions and, in particular, variations that did or
did not use const or references for the loop variables received full credit. This
version with references is likely somewhat more efficient since it avoids copying
table entries, but either is fine for an exam question.

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 3 of 13

Question 2. (18 points) Constructor madness. Consider the following program, which as
is traditional, compiles and executes without any errors or memory problems.

#include <iostream>
using namespace std;

class Thing {
public:
 // constructors
 Thing(): x_(17) { cout << "Thing::Thing()" << endl; }
 Thing(int n): x_(n) { cout << "Thing::Thing(n)" << endl; }
 Thing(const Thing &t): x_(t.x_) {cout<<"Thing copy ctr"<<endl;}
 // destructor
 virtual ~Thing() { cout << "Thing::~Thing()" << endl; }
 // other member functions
 virtual int get() { cout << "Thing::get" << endl;
 return grab(); }
 int grab() { cout << "Thing::grab" << endl;
 return x_; }
private:
 int x_;
};

class Blob: public Thing {
public:
 Blob(): Thing(42), n_(2) { cout << "Blob::Blob()" << endl; }
 Blob(const Blob &b): Thing(), n_(b.n_)
 { cout << "Blob copy ctr" << endl; }
 virtual ~Blob() { cout << "Blob::~Blob" << endl; }
 int get() { cout << "Blob::get" << endl; return grab(); }
 int grab() { cout << "Blob::grab" << endl; return n_; }
private:
 int n_;
};

int main() {
 Thing t;
 cout << t.get() << endl;
 Blob b;
 Thing* ptr = &b;
 cout << ptr->get() << endl;
 cout << ptr->grab() << endl;
 Blob *q = new Blob(b);
 cout << q->get() << endl;
 cout << q->grab() << endl;
 delete q;
 return 0;
}
(Question continued on next page. You may remove this page for convenience.)

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 4 of 13

Question 2. (cont). Exactly what does this program print when it is executed? You
should work carefully as you trace the code (of course). A few hints:

• Objects are constructed in the order of declaration
• Base class constructors run before derived class constructors
• Destructors run in the reverse order of constructors
• Of course, constructors and destructors are executed as needed when heap objects

are explicitly allocated or deleted.

Write the output produced by the program below.

Thing::Thing()

Thing::get

Thing::grab

17

Thing::Thing(n)

Blob::Blob()

Blob::get

Blob::grab

2

Thing::grab

42

Thing::Thing()

Blob copy ctr

Blob::get

Blob::grab

2

Blob::grab

2

Blob::~Blob

Thing::~Thing()

Blob::~Blob

Thing::~Thing()

Thing::~Thing()

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 5 of 13

Question 3. (16 points) Templates & things. This C++ code defines a class that
implements a linked list of integers and a small main program that uses it. All of the
code is included in the class definition to keep the question somewhat shorter – there is
no separate implementation file. This code does compile and execute successfully.

#include <iostream>
using namespace std;

template <class T>
class List {
public:
 // construct empty list
 List() : head_(nullptr) { }

 // add new node with value n to the front of the list
 virtual void add(int T n) {
 Link *p = new Link(n, head_);
 head_ = p;
 }

private:
 struct Link { // nodes for the linked list
 int T val;
 Link * next;
 Link(int T n, Link* nxt): val(n), next(nxt) { }
 };
 // List instance variable
 Link * head_; // head of list or nullptr if list is empty
}; // end of List class

int main() {
 List<int> nums;
 nums.add(1);
 nums.add(2);
 return 0;
}

Answer questions about this code on the next page. Leave this page in the exam – you
need to mark some changes in the above code.

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 6 of 13

Question 3. (cont.) (a) (8 points) The List class on the previous page would be more
useful if it could be used to store lists of any values, not just ints. On the previous page
show the changes that would be needed to make this class into a template where the type
of the payload data in the linked list nodes is a type parameter T instead of int.

Be sure to mark any corresponding changes needed, if any, in the main function at the
bottom of the code.

Reminder: you’ll need to start by adding template <class T> or template
<typename T> (which means the same thing) at the beginning of the class definition.

Changes shown in bold green on the previous page

(b) (8 points) There is at least one unfortunate problem with the original code. When we
run the code using valgrind we get an output report that concludes ominously with:

==3276== LEAK SUMMARY:
==3276== definitely lost: 16 bytes in 1 blocks
==3276== indirectly lost: 16 bytes in 1 blocks
==3276== possibly lost: 0 bytes in 0 blocks
==3276== still reachable: 72,704 bytes in 1 blocks
==3276== suppressed: 0 bytes in 0 blocks

Give a brief description of the what’s wrong and then describe how to fix it. If the
solution requires additional code, write the new code below and indicate where it should
be added in the original code or what code it should replace. If it matters, your changes
should assume that the template changes from part (a) of the problem have already been
done.

There is a memory leak, indicated by the definitely and indirectly lost lines. The
problem is that when a List is deleted, the Links owned by the List are not
themselves deleted. The solution is to add a destructor to class List:

 virtual ~List() {
 Link *p = head_;
 while (p != nullptr) {
 Link *q = p->next;
 delete p;
 p = q;
 }
 }

Notes: the “still reachable” line in the valgrind output refers to memory allocated by
library routines. That is normal and not an error – at least with the current version
of valgrind and the C/C++ libraries.

Several people fixed the memory leak by changing Link to use smart pointers. If
done correctly that received full credit. But a simple destructor solves the problem
without the overhead of smart pointers.

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 7 of 13

Question 4. (16 points) virtual reality. The following program compiles, runs, and
produces output with no error messages or other problems. Notice that there are no
virtual functions in the code. Answer questions about it at the bottom of the page.

#include <iostream>
using namespace std;

class A {
public:
 void m1() { cout << "!"; }
virtual void m2() { cout << "a"; }
 void m3() { cout << "o"; }
 void m4() { cout << "s"; }
};

class B: public A {
public:
virtual void m1() { cout << "H"; }
 void m2() { cout << "3"; }
 void m3() { cout << "c"; }
virtual void m4() { cout << "k"; }
};

class C: public B {
public:
 void m1() { cout << "r"; }
 void m3() { cout << "l"; }
 void m4() { cout << " "; }
};

int main() {
 B b;
 C c;
 A *aPtr = &b;
 B *bPtr = &c;

 aPtr->m2();
 bPtr->m2();
 bPtr->m2();
 bPtr->m4();
 bPtr->m1();
 aPtr->m3();
 bPtr->m3();

 aPtr = &c;
 bPtr = &b;
 bPtr->m4();
 aPtr->m4();
 aPtr->m1();
 cout << endl;
 return 0;
}

(a) (8 points) What does this program print when it executes? Answer the question for
the program exactly as written with no virtual functions.

a33kHocks!

(b) (8 points) Modify the program above by adding the virtual keyword in
appropriate places so that the modified program will print 333 rocks! (including
the ! and the space between 333 and rocks, but no spaces before or after). You may
not make any other changes to the code other than showing where to add virtual.
There may be more than one possible solution. Any correct solution is acceptable.

See code changes above. Those are the minimum ones needed.

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 8 of 13

Question 5. (6 points) Concurrency strategies. In lecture we discussed several strategies
for organizing a concurrent server. One was to use multiple threads to process
transactions as in the left diagram below. The other was an asynchronous, event driven
model, as in the right diagram. A third was to use multiple processes (fork) instead of
threads, but we will not consider that strategy in this question.

(In case it’s hard to read, the small black boxes in the diagrams represent CPU time slices
used by individual transactions; the larger, lighter boxes represent I/O operations.)

If implemented properly both strategies provide good overlap of concurrent transactions
and good utilization of CPU and I/O resources. But there are significant differences in
the programming needed for the two strategies.
(a) (3 points) Give one major advantage of implementing a concurrent server using
multiple threads (as in the left diagram) compared to an asynchronous event-driven
server.

Probably the biggest advantage is that the code for handling individual requests is
basically the same as the code needed in a sequential server without concurrency.

(b) (3 points) Give one major advantage of implementing a concurrent server using an
asynchronous, event-driven architecture (as in the right diagram) compared to using
multiple threads.
A major advantage is that there is only one thread, so synchronization problems
(data races) that occur in programs using concurrent threads cannot happen.

Notes: The question was only asking about the tradeoffs between two implementation
strategies for a simple server. The amount of CPU and I/O time needed to process requests
will be roughly the same for either strategy, given the same sequence of requests. While
there is some extra overhead for thread context switching in the first architecture, the
event-driven version requires similar work to retrieve and dispatch events, and thread pools
can minimize thread creation costs. It is true that event-driven code is a natural
architecture for things like graphical user interfaces, but that is not a main issue for a
server. Threads may generalize more naturally to multicore systems, but event dispatching
can be done on multicore systems (every operating system does this), although then there
will be some potential synchronization issues.

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 9 of 13

Question 6. (14 points) More concurrency, in C. This question is about locking and
concurrency, but it needs a high-level overview of a new data structure before we get to
the main question.
Suppose we had a Queue data structure that was very similar to the linked lists we
implemented in HW1. Like the linked lists, our Queue type is a pointer to the actual data
structure, which is some sort of linked list. Payload data stored in a Queue is represented
by void* pointers. The basic operations are these:
// return a pointer to a newly allocated Queue data structure
Queue AllocateQueue();

// add payload to the end of the queue
void Enqueue(Queue q, QPayload_t payload);

// remove the front item from the queue and store it in result
void* Dequeue(Queue q, QPayload_t* result);

// return true if q is empty, otherwise return false
bool QueueEmpty(Queue q);

These operations are implemented in the obvious way – very much like the list structures
from HW1
On the next pages there is a program that reads requests (data) from standard input (file
descriptor 0) and writes computed results to standard output (file descriptor 1). However
the program uses two threads – one reads requests as they arrive and places them in a
queue. The other removes requests from the queue when it is ready to process the next
request. If the queue is empty when the second thread is ready to do more work, it waits
for more data to become available. The end of data, which signals both threads to shut
down, is indicated by a NULL value placed in the queue.
Look at the code on the next pages and then answer the questions at the end. Hint: you
won’t need to read every line of code in detail at first, so just skim it to get the idea of
what’s going on, then look at the questions before studying the code in more detail.

The original author of the code had an idea that locks might be needed in the future, but
didn’t know how to use them. So the main program does create a lock and later destroy it
right before exiting, but never does anything with it.
In case it’s useful for reference, here are some pthread function prototypes.

• pthread_create(thread, attr, start_routine, arg)
• pthread_exit(status)
• pthread_join(thread, value_ptr)
• pthread_cancel (thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr)

 // attr=NULL usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)
• pthread_mutex_destroy(pthread_mutex_t * mutex)

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 10 of 13

Question 6. (cont.) Start of the code. Please do not remove this page from the exam.
typedef void *Request;
static Queue queue; // global Queue pointer variable
 // Implemented similarly to HW1 LinkedList
static pthread_mutex_t lock;

// Return the next request read from infd. Return NULL if no more
// requests are available. Implemented in another file.
Request ReadNextRequest(int infd);
// Process given Request and write appropriate response to outfd.
// Implemented in another file.
void WriteResponse(int outfd, Request req);

// Read requests from the int file descriptor encoded in arg and
// store them in the global queue as they become available.
void *producer_fn(void *arg) {
 int infd = (int) arg;
 while (1) {
 Request req = ReadNextRequest(infd);
 pthread_mutex_lock(&lock);
 Enqueue(queue, (QPayload_t) req);
 pthread_mutex_unlock(&lock);
 if (req == NULL)
 break; // No more requests available – quit after putting
 // NULL in the queue
 }
 return NULL;
}
// Remove requests from the global queue and write the results
// on the int file descriptor encoded in arg.
void *consumer_fn(void *arg) {
 int outfd = (int) arg;
 Request req;
 while (1) {
 pthread_mutex_lock(&lock);
 if (!QueueEmpty(queue)) {
 Dequeue(queue, (QPayload_t *) &req);
 pthread_mutex_unlock(&lock);
 if (req == NULL)
 break; // Signals the end of requests to handle
 WriteResponse(outfd, req);
 } else {
 pthread_mutex_unlock(&lock);
 // Nothing to consume, sleep for 1 ms then check again
 sleep(1000);
 }
 }
 return NULL;
}
(code continued on next page)

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 11 of 13

Question 6. (cont.) (remainder of the code) Please do not remove this page either.

int main(int argc, char** argv) {
 pthread_t conThd, prdThd;
 pthread_mutex_init(&lock, NULL);
 queue = AllocateQueue();

 // Create threads for producing and consuming
 if (pthread_create(&prdThd, NULL, &producer_fn, (void *)0)!=0||
 pthread_create(&conThd, NULL, &consumer_fn, (void *)1)!=0){
 fprintf(stderr, "pthread_create failed\n");
 return EXIT_FAILURE;
 }
 // Wait for both threads to terminate
 if (pthread_join(prdThd, NULL) != 0 ||
 pthread_join(conThd, NULL) != 0) {
 fprintf(stderr, "pthread_join failed\n");
 return EXIT_FAILURE;
 }

 pthread_mutex_destroy(&lock);
 return 0;
}

Now (finally!!) for the questions.

(a) Is locking needed in this code to ensure correct operation? Give a brief explanation of
why or why not.

Yes. Without locks, both threads could attempt to modify the queue at the same
time. If the steps for one queue operation are interleaved with steps for another, it
is almost certain that the queue data structures will be updated incorrectly.

(b) If locking is needed in the code to ensure correct operation, show where to place
appropriate pthread_mutex_lock(&lock) and pthread_mutex_unlock(&lock)
statements in the above code. (You cannot modify the Queue implementation itself –
assume we don’t have access to that source code.) For full credit your added code should
ensure correct synchronization but still allow for as much concurrency as is reasonably
possible in the producing and consuming threads (i.e., the critical sections enforced by
the use of locks should be no larger than needed).
See additions to the above code in bold green.

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 12 of 13

Question 7. (11 points) There’s no place like 127.0.0.1.
Here is an alphabetical list of some functions that are used in TCP socket programming:

● accept()
● bind()
● close()
● connect()
● getaddrinfo()
● listen()
● read()/write()
● socket()

(a) (5 points) List in the correct order the functions that are executed to perform the 5
steps required for a client program to create a socket, exchange data with a server, and
close the connection:

1. getaddrinfo

2. socket

3. connect

4. read/write

5. close
(b) (6 points) List in the correct order the functions that are executed to perform the seven
steps needed for a server to create a socket, exchange data with a client machine, and
close the connection:

1. getaddrinfo

2. socket

3. bind

4. listen

5. accept

6. read/write

7. close

 CSE 333 Final Exam June 8, 2016 Sample Solution

 Page 13 of 13

Question 8. (1 free point) Draw something interesting below.
All interesting drawings get the free point.

By definition, all drawings where at least some drawing occurred are interesting.

Have a great summer!!
The CSE 333 staff

