CSE 333

Lecture 14 -- smart pointers

Hal Perkins
Department of Computer Science & Engineering
University of Washington

A
4

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Administrivia 1 (Monday)

New exercise out this morning, due Wednresday next Monday

Exam Friday, in class

Closed book, no notes — exam questions can be more
straightforward that way; reference info on test as needed

Topics: everything from lectures, exercises, project, etc. up to HW?2
& basics of C++ (including references, const, classes,
constructors, destructors, new/delete, basic ideas behind
templates/STL and smart pointers)

Old exams and topic list on the web now

Review in sections Thursday

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Administrivia 2 (Monday)

Upcoming topics
finishing up C++ (smart pointers then subclasses)

rest of quarter: networking, tools, more systems topics, other
good stuff

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Administrivia (Wednesday)

H\W3 out Friday right after exam; brief demo in class today

Exercise 13 (assigned Monday) due next Monday morning

—xam Friday, in class

Closed book, no notes — exam questions can be more
straightforward that way; reference info on test as needed

Topics: everything from lectures, exercises, project, etc. up to
HW?2 & basics of C++ (including references, const, classes,
constructors, destructors, new/delete, nothing after that)

Old exams and topic list on the web now
Review In sections tomorrow

CSE333 lec 12 C++.4 // 04-26-17 // Perkins

Last time

We learned about STL

noticed that STL was doing an enormous amount of copying

we were tempted to use pointers instead of objects

but tricky to know who is responsible for delete’ing and when

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

C++ smart pointers

A smart pointer is an object that stores a pointer to a
heap allocated object

a smart pointer looks and behaves like a regular C++ pointer

how? by overloading *, ->,[], etc.

a smart pointer can help you manage memory

the smart pointer will delete the pointed-to object at the right time,
including invoking the object’s destructor

when that is depends on what kind of smart pointer you use

SO, if you use a smart pointer correctly, you no longer have to
remember when to delete new’d memory

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

A toy smart pointer

We can implement a simple one with:
a constructor that accepts a pointer
a destructor that frees the pointer

overloaded * and -> operators that access the pointer

see toyptr/

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

What makes it a toy”

Can’t handle:
arrays
copying
reassignment
comparison

...plus many other subtleties...

Luckily, others have built non-toy smart pointers for us!

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

C++11’s std::unique_ptr

The unique_ptr template is part of C++’s standard library

available starting with the C++11 standard

A unigue_ptr takes ownership of a pointer

when the unique_ptr object is delete’d or falls out of scope, its
destructor is invoked, just like any C++ object

this destructor invokes delete on the owned pointer

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Using a unique_ptr

-

-

N
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::unique ptr
#include <stdlib.h> // for EXIT SUCCESS
void Leaky() {
int *x = new int(5); // heap allocated
(*x)++;
std::cout << *x << std::endl;
} // never used delete, therefore leak
void NotLeaky() {
std::unique_ptr<int> x(new int(5)); // wrapped, heap-allocated
(*x)++;
std::cout << *x << std::endl;
} // never used delete, but no leak
int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;
} unique .CC |

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Why are unique_ptrs useful?

If you have many potential exits out of a function, it's easy
to forget to call delete on all of them

unique_ptr will delete its pointer when it falls out of scope

thus, a unique_ptr also helps with exception safety

4 N

int NotLeaky () {
std: :unique ptr<int> x(new int(5));

lots of code, including several returns
lots of code, including a potential exception throw
lots of code

return 1;

- J
CSES33 lec 14 C++.6 // 05-01-17 // Perkins

unique_ptr operations

4 N
#include <memory> // for std::unique ptr
#include <stdlib.h> // for EXIT SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
unique ptr<int> x(new int(5));

// Return a pointer to the pointed-to object
int *ptr = x.get();

// Return a reference to the pointed-to object
int val = *x;

// Access a field or function of a pointed-to object
unique ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate the pointed-to object and reset the unique ptr with
// a new heap-allocated object.
x.reset(new int(1l));

// Release responsibility for freeing the pointed-to object.
ptr = x.release();

delete ptr;

return EXIT SUCCESS;

} CSES33 lec 14 C+4g PNEN R 2P BE
gu)

unique_ptrs cannot e copied

4 N
#include <memory>

Stdunlque—ptr #include <stdlib.h>

disallows the use of its int main(int argc, char *+argv) |
copy constructor and std::unique_ptr<int> x(new int(5));
aSSIQr]meﬂt Opera'tor // fail, no copy constructor

std: :unique_ ptr<int> y(x);

therefore, yOU cannot // succeed, z starts with NULL pointer
. std: :unique_ ptr<int> z;
COpY a unique_ptr

// fail, no assignment operator
zZ = X;

this is what it means for

it to be “unique” return EXIT SUCCESS;
\} uniquefail.cc/

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Transferring ownership

You can use reset() and release()

release() returns the pointer, sets wrapper’s pointer to NULL

reset() delete’s the current pointer, acquires a new one

4 N
int main(int argc, char **argv) {
unique ptr<int> x(new int(5));

cout << "x: " << x.get() << endl;

unique ptr<int> y(x.release()); // y takes ownership, x abdicates it
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

unique ptr<int> z(new int(10));
// z delete's its old pointer and takes ownership of y's pointer.

// y abdicates its ownership.
z.reset(y.release());

return EXIT SUCCESS;
} CSE333 lec 14 m%]pﬂ@%&@@
/

Copy semantics

Assigning values typically
means making a copy

sometimes this is what you want

assigning the value of one string
to another makes a copy

sometimes this is wasteful

returning a string and assigning it
makes a copy, even though the
returned string is ephemeral

#include <iostream>
#include <string>

std: :string ReturnFoo(void) {
std::string x("foo");
// this return might copy
return x;

}

int main(int argc,
char **argv) {
std::string a("hello");
// copy a into b
std::string b(a);

// copy return value into b.
b = ReturnFoo();

return EXIT SUCCESS;

copysemantics.cc

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Move semantics

#include <iostream>
#include <string>

C++11 introduces
“move semantics”

std::string ReturnFoo(void) ({
std::string x("foo");
// this return might make a copy

moves values from one return x;
object to another }
without copying (“steal”) int main(int argc, char **argv) {

std::string a("hello");
useful for optimizing

// moves a to b

away temporary copies std::string b = std::move(a);
std::cout << "a: " << a << std::endl;
std::cout << "b: " << b << std::endl;

complex topic

. ., // moves the returned value into b.
rvalue references b = std::move(ReturnFoo());
std::cout << "b: " << b << std::endl;

mostly beyond scope of
333 (this gtr anyway)

return EXIT SUCCESS;

& cseas . TIQVEREMANGIGS CC

Move semantics and unique_ptr

unigue_ptr supports move semantics
can “move” ownership from one unique_ptr to another

old owner:

post-move, its wrapped pointer is set to NULL
new owner.

pre-move, its wrapped pointer is delete’d

post-move, its wrapped pointer is the moved pointer

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Transferring ownership

Using move semantics

-

int main(int argc, char **argv) {
unique ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;

cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;
unique_ ptr<int> z(new int(10));
// y abdicates its ownership.

z = std::move(y);

return EXIT SUCCESS;

unique ptr<int> y = std::move(x); // y takes ownership, x abdicates it

// z delete's its old pointer and takes ownership of y's pointer.

unique4.ccj

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

unique_ptr and STL

unique_ptrs can be stored in STL containers!!

but, remember that STL containers like to make lots copies of
stored objects

and, remember that unique_ptrs cannot be copied

how can this work??
Move semantics to the rescue

when supported, STL containers will move rather than copy

luckily, unique_ptrs support move semantics

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

unique_ptr and STL

sSee uniguevec.cc

unique_ptr and “<”

a unigque_ptr implements some comparison operators

e.g., a unique_ptr implements the “<” operator
but, it doesn’t invoke “<” on the pointed-to objects

instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to value)

SO, to use sort on vectors, you want to provide sort with a
comparison function

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

unique_ptr and sorting with STL

See uniquevecsort.cc

unique_ptr, “<” and maps

Similarly, you can use unique_ptrs as keys in a map

good news: a map internally stores keys in sorted order
so iterating through the map iterates through the keys in order

under the covers, by default, “<” is used to enforce ordering

bad news: as before you can’t count on any meaningful
sorted order using “<” of unique_ptrs

iInstead, you specify a comparator when constructing the map

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

unique_ptr, “<” and maps

see uniguemap.cc

unique_ptr and arrays

unigue_ptr can store arrays as well

will call delete[| on destruction

4)
#include <memory> // for std::unique ptr
#include <stdlib.h> // for EXIT SUCCESS

using namespace std;
int main(int argc, char **argv) {
// x 1s a unique ptr storing an array of 5 ints

unique_ ptr<int[]> x(new int[5]);

x[0]
x[2]

1;
2;

return EXIT SUCCESS;
} unique5.coj

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

C++11 has more smart ptrs

shared_ptr
copyable, reference counted ownership of objects / arrays

multiple owners have pointers to a shared object

weak_ptr

similar to shared_ptr, but doesn’t count towards refcount

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

shared_ptr

A std::shared_ptr is similar to a std::unique_ptr

but, the copy / assign operators increment a reference count rather
than transferring ownership

after copy / assign, the two shared_ptr objects point to the same
pointed-to object, and the (shared) reference count is 2

when a shared_ptr is destroyed, the reference count is decremented

when the reference count hits zero, the pointed-to object is deleted

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

shared_ptr example

4 I
#include <cstdlib>

#include <iostream>
#include <memory>

int main(int argc, char **argv) {
// x contains a pointer to an int and has reference count 1.
std: :shared ptr<int> x(new int(10));

{

// X and y now share the same pointer to an int, and they
// share the reference count; the count is 2.
std::shared ptr<int> y = x;
std::cout << *y << std::endl;
}
// y fell out of scope and was destroyed. Therefore, the
// reference count, which was previously seen by both x and y,
// but now is seen only by x, is decremented to 1.
std::cout << *x << std::endl;

return EXIT SUCCESS;
} sharedexample.cc
J

-

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

shared_ptrs and STL containers

Even simpler than unique_ptrs

safe to store shared_ptrs in containers, since copy/assign
maintain a shared reference count and pointer

see sharedvec.cc

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

weak_ptr

If you used shared_ptr and have a cycle in the sharing
graph, the reference count will never hit zero

a weak_ptr is just like a shared_ptr, but it doesn’t count
towards the reference count

a weak_ptr breaks the cycle

but, a weak_ptr can become dangling

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

cycle of shared_ptr’s

-
#include <memory>

using std::::shared ptr;

class A {

public:
shared ptr<A> next;
shared ptr<A> prev;

};

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared_ptr<A>(new A());

head->next->prev = head;

return O;

strongcycle.cc/

head | "~~~ ..

..

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

il I R

breaking the cycle with weak_ptr

4 I
#include <memory>

using std::shared ptr; head [*~=-- .
using std::weak_ptr; .

class A {
public:
shared ptr<A> next; T A
weak_ptr<A> prev; 5 1 5 5 0

}i

int main(int argc, char **argv) {

shared ptr<A> head(new A()); prev _.._ prev __
head->next = shared_ptr<A>(new A()); : | ; 5
head->next->prev = head; E 0 ; § 1

return O;

} weakeycle.cc |

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

il I R

using a weak_ptr

4 N
#include <iostream>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

int main(int argc, char **argv) {
weak ptr<int> w;

{
shared_ ptr<int> x;
{
shared ptr<int> y(new int(10));
w =Y
x = w.lock();
std::cout << *x << std::endl;
}
std::cout << *x << std::endl;
}

shared ptr<int> a = w.lock();
std::cout << a << std::endl;
return O;

} usingweak.cc/

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Exercise T

Write a C++ program that:
has a Base class called “Query” that contains a list of strings
(Feel free to wait until after we’ve talked about C++ subclasses)

has a Derived class called “PhrasedQuery” that adds a list of
phrases (a phrase is a set of strings within quotation marks)

uses a shared_ptr to create a list of Queries

populates the list with a mixture of Query and PhrasedQuery
objects

prints all of the queries Iin the list

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

Exercise 2

Implement Triple, a templated class that contains three
“things.” In other words, it should behave like std::pair,
but it should hold three objects instead of two.

iInstantiate several Triple that contains shared_ptr<int>’s
insert the Triples into a vector

reverse the vector

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

See you on Friday!

CSES333 lec 14 C++.6 // 05-01-17 // Perkins

