CSE 333

Mini-lecture 13 - revisiting references

Hal Perkins
Paul G. Allen School of Computer Science & Engineering
University of Washington

CSE333 lec 13 C++.5// 11-01-17 // Perkins

3 confusion about references

When should they be used?
as arguments”?

as return values?

When can using them cause trouble”

CSE333 lec 13 C++.5// 11-01-17 // Perkins

Let's go through examples

I'll show you some code, you tell me whether:
we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see argl.cc

CSE333 lec 13 C++.5// 11-01-17 // Perkins

argl.cc

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

For simple primitive types (int, float, etc.), passing in a
const reference results in a correct program, but the
performance benefit is questionable.

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see arg2.cc

CSE333 lec 13 C++.5// 11-01-17 // Perkins

arg2.cc

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

For complex types (structs, object instances), passing in
a const reference results in a correct program and likely
gives you some performance benefits.

POP quiz: why not pass in a pointer instead?

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see retl.cc

CSE333 lec 13 C++.5// 11-01-17 // Perkins

retl.cc

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

Never return a reference to a local (stack allocated)
variable; it’s the same error as returning a pointer to one.

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see Complex1.h

CSE333 lec 13 C++.5// 11-01-17 // Perkins

Complex1.h

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

A copy constructor must have a reference parameter
(that identifies it as a copy ctr). const could be omitted
but is almost always used. It is correct, safe, and efficient.

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see Complex2.h

CSE333 lec 13 C++.5// 11-01-17 // Perkins

Complex2.h

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

Because we don’t want to return <a reference to *this>,
but instead <a copy of a local variable>, we cannot use a
reference In this case.

pop quiz: does chaining work if we correct the code”

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see Complex3.h

CSE333 lec 13 C++.5// 11-01-17 // Perkins

Complex3.h

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

We must use a reference so chaining works correctly. [t
IS also more efficient to use a reference.

pop quiz: why does chaining break if we don’t use a
reference”? give an example of chained code that breaks.

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see Complex4.h

CSE333 lec 13 C++.5// 11-01-17 // Perkins

Complex4.h

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

This is the same case as the plain assignment operator;
we must return a reference so that chaining works.

CSE333 lec 13 C++.5// 11-01-17 // Perkins

see Complexb.h

CSE333 lec 13 C++.5// 11-01-17 // Perkins

Complex5.h

we must use a reference
it’s OK and encouraged to use a reference
it’s OK but discouraged to use a reference

we must NOT use a reference

This is the same case as the assignment operator; we
must return a reference so that chaining works. More so,
copying std::cout doesn’t make sense (and is prevented)!

CSE333 lec 13 C++.5// 11-01-17 // Perkins

See you on Friday!

CSE333 lec 13 C++.5// 11-01-17 // Perkins

