CSE 333

Lecture 9 - intro to C

Hal Perkins

Paul G. Allen School of Computer Science & Engineering

University of Washington

CSE333 lec 9 C++.1//10-13-17 // Perkins

Administrivia

Happy Friday the 13th!!

New exercise posted after sections yesterday, due
Monday morning

- Read a directory and open/copy text files found there

- Good warmup for ...
HW?2

- Writeup posted now, starter files pushed this afternoon

- Short demo in class today

CSE333 lec 9 C++.1//10-13-17 // Perkins

Administrivia for Monday

New exercise out today, due Wednesday morning

HW?2 due a week from Thursday - how’s it look”

- Reminder: you can use our hw1/solution_binaries/libhw1.a
instead of your own hw1 code if you'd like

Section this week: C++, const / references / classes

CSE333 lec 9 C++.1//10-13-17 // Perkins

loday’s goals

An introduction to C++
- some shortcomings of C that C++ addresses
- give you a perspective on how to learn C++

- Kkick the tires and write some code

Advice: read related sections in the C++ Primer. It's hard
to learn the “why it is done like this” from reference docs

- Lectures and examples introduce main ideas, but aren’t
everything you'll want need to understand

CSE333 lec 9 C++.1//10-13-17 // Perkins

C

We had to work hard to mimic encapsulation, albstraction

- encapsulation: hiding implementation details

» used header file conventions and the “static” specifier to separate
private functions from public functions

» cast structures to (void *) to hide implementation-specific details

- abstraction: associating behavior with encapsulated state

» the functions that operate on a LinkedList were not really tied to the
linked list structure

» we passed a linked list to a function, rather than invoking a method
on a linked list instance

CSE333 lec 9 C++.1//10-13-17 // Perkins

C++

A major addition is its support for classes & objects!

- classes
» public, private, and protected methods and instance variables
» (multiple!) inheritance

- polymorphism

» static polymorphism: multiple functions or methods with the same
name, but different argument types (overloading)

» Works for all functions, not just class members

» dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

CSE333 lec 9 C++.1//10-13-17 // Perkins

We had to emulate generic data structures
- customer passes a (void *) as a payload to a linked list

- customer had to pass in function pointers so that the linked
list could operate on payloads correctly

» comparisons, deallocation, pickling up state, etc.

CSE333 lec 9 C++.1//10-13-17 // Perkins

C++

Supports templates to facilitate generic data types!

» Parametric polymorphism - same idea as Java generics, but
different in detalls - particularly implementation

- 1o declare that x is a vector of ints:
» vector<int> x;

- to declare that x is a vector of floats:
» vector<float> x;

- to declare that x is a vector of (vectors of floats):
» vector<vector<float>> x;

CSE333 lec 9 C++.1//10-13-17 // Perkins

C

We had to be careful about namespace collisions

- (C distinguishes between external and internal linkage

» use “static” to prevent a name from being visible outside a source
file (as close as C gets to “private”)

» otherwise, a name is global -- visible everywhere

- we used naming conventions to help avoid collisions in the
global namespace

» LLIteratorNext, HTIteratorNext, etc.

CSE333 lec 9 C++.1//10-13-17 // Perkins

C++

Permits a module to define its own namespace!
- the linked list module could define an “LL.” namespace
- the hashtable module could define an “HT” namespace

- both modules could define an lterator class
» one would be globally named LL: : Iterator

» the other would be globally named HT: : Iterator
Classes also allow duplicate names without collisions

- Namespaces group & isolate names in collections of classes
and other “global” things (somewhat like Java packages)

CSE333 lec 9 C++.1//10-13-17 // Perkins

C does not provide any standard data structures
- we had to implement our own linked list and hash table

- as a C programmer, you often re-invent the wheel badly

» maybe if you're clever you'll use somebody else’s libraries

» but, C’s lack of abstraction, encapsulation, and generics means
you'll probably have to tweak them, or tweak your code to use them

CSE333 lec 9 C++.1//10-13-17 // Perkins

C++

The C++ standard library is huge!

generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

» and iterators for most of these

a string class: hides the implementation of strings

- streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

- and more...

CSE333 lec 9 C++.1//10-13-17 // Perkins

C

Error handling Is a pain
- have to define error codes and return them

- customers have to understand error code conventions, and
need to constantly test return values

- ifa() calls b() calls ¢()

» a depends on b to propagate an error in ¢ back to it

CSE333 lec 9 C++.1//10-13-17 // Perkins

C++

Supports exceptions!

- try / throw / catch

if used with discipline, can simplify error processing
- but, if used carelessly, can complicate memory management

- consider: a() calls b() callsc()

» if ¢() throws an exception that b() doesn’t catch, you might not get
a chance to clean up resources allocated inside b()

But much C++ code still needs to work with C & old C++
libraries, so still uses return codes, exit(), etc.

CSE333 lec 9 C++.1//10-13-17 // Perkins

Some tasks still hurt in C++

Memory management

- C++ has no garbage collector

» you have to manage memory allocation and deallocation, and track
ownership of memory

» it’s still possible to have leaks, double frees, and so on
- but, there are some things that help
» “smart pointers”
e classes that encapsulate pointers and track reference counts

e deallocate memory when the reference count goes to zero

CSE333 lec 9 C++.1//10-13-17 // Perkins

Some tasks still hurt in C++

C++ doesn’t guarantee type or memory safety

- You can still...
» forcibly cast pointers between incompatible types
» walk off the end of an array and smash the stack (or heap)
» have dangling pointers

» Cconjure up a pointer to an address of your choosing

CSE333 lec 9 C++.1//10-13-17 // Perkins

C++ has many, many features.

Operator overloading

- your class can define methods for handling “+7, “->", etc!
Object constructors, destructors

- particularly handy for stack-allocated objects

Reference types

- truly pass-by-reference instead of pass-by-value

Advanced OO

- multiple inheritance, virtual base classes, dynamic dispatch

CSE333 lec 9 C++.1//10-13-17 // Perkins

How to think about C++

set of styles
and ways to
use C++ N style
guides

good styles
and robust
engineering
practices set of styles
and ways to
use C

CSEB333 lec 9 C++.1//10-13-17 // Perkins

Or...

in the hands of a but, if you’re not so
disciplined programmer, disciplined about how
C++ is a powerful weapon you use C++...

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-
#include <iostream>
#include <cstdlib>

N
helloworld.cc

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;
}
\ %

Looks simple enough...

- compile with g++ instead of gcc:

» g++ -Wall -g -std=c++11 -o helloworld helloworld.cc

- let’s walk through the program step by step

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

helloworld.cc |
(Finclude <iostream>> elowerid.cc

#include cstdlib>

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;
}
\ %

jostream is part of the C++ standard library

- note you don’t include a “.h” when you include C++ standard
library headers

» but you do for local headers (e.g., #include “Il.n”)

- lostream declares stream object instances, including std::cin,
std::cout, std::cerr, in the “std” namespace

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

/
#in ol= 19 eam>

Ci#include <cstdlib>

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;
}
\ %

N
helloworld.cc

cstdlib is the C standard library’s stdlib.h header
- (nearly) all C standard library functions are available to you

» for header <foo.h>, you should #include <cfoo>

- we need it for EXIT_SUCCESS, as usual

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-
#include <iostream>
#include <cstdlib>

int _madn(int argc, char **argv) ({
@ < "Hello, World!" << std::endl;
recurn XIT_SUCCESS M

}
- J

N
helloworld.cc

std::cout is the “cout” object instance declared by iostream,
living within the “std” namespace (C++’s name for stdout)

- std::cout is an object of class ostream
» http://www.cplusplus.com/reference/iostream/ostream/
- used to format and write output to the console

- the entire standard library is in namespace std

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-
#include <iostream>
#include <cstdlib>

int _madn(int argc, char **argv) ({
@ < "Hello, World!" << std::endl;
recurn XIT_SUCCESS M

}
- J

N
helloworld.cc

C++ distinguishes between objects and primitive types
- primitive types include all the familiar ones from C
» char, short, int, unsigned long, float, double, long double, etc.

» and, C++ defines “bool” as a primitive type (woohoo!)

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-

helloworld.cc)
#include <iostream> elioworia.cc

#include <cstdlib>

int main(int gc, char **argv) {
std::cou€ ;i)Hello, World!" << std::endl;
return EX . UCCESS;

}
- J

“<<” is an operator defined by the C++ language
- it’s defined by C as well; in CG/C++, it bitshifts integers

- but, C++ allows classes to overload operators
» the ostream class overloads “<<”

» i.e., it defines member functions (methods) that are invoked
when an ostream is the LHS of the << operator

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-
#include <iostream>
#include <cstdlib>

int main(int gc, char **argv) {
std::cou€ ;i)Hello, World!" << std::endl;
return EX . UCCESS;

}
- J

N
helloworld.cc

ostream has many different functions to handle <<
- the functions differ in the type of the RHS of <<

- Ifyou do std::cout << “foo”;

» C++ invokes cout’s function to handle “<<” with RHS “char *”

CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-

helloworld.cc)
#include <iostream> elioworia.cc
#include <cstdlib>

int main(igt 2 ghar **argv) {

std: :cout << "Hello, World! < std::endl;

return v

}
- J

the ostream class’s member functions that handle “<<” return (a
reference to) themselves

- 80, when (std::cout << “Hello, World!”) is evaluated:
» a member function of the std::cout object is invoked
» it buffers the string “Hello, World!” for the console

» and, it returns (a reference to) std::cout
CSE333 lec 9 C++.1//10-13-17 // Perkins

Hello, world!

-
#include <iostream>
#include <cstdlib>

int main(int argc, char **argv)
std: :cout << "Hello, World!'{<< std::endl;
return EXIT SUCCESS;

}
- J

N
helloworld.cc

next, a member function on std::cout to handle “<<” is invoked
- this time, the RHS is std: :endl
- turns out this is a pointer to a “manipulator” function

» this manipulator function writes newline to the ostream it
IS Invoked on, and then flushes the ostream’s buffer

» S0, something is printed on the console at this point

CSE333 lec 9 C++.1//10-13-17 // Perkins

Wow...

-

helloworld.cc)
#include <iostream> elioworia.cc

#include <cstdlib>

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
- J

You should be surprised and scared at this point

- C++ makes it easy to hide a significant amount of complexity
» it’s powerful, but really dangerous

» once you mix together templates, operator overloading, method
overloading, generics, and multiple inheritance, it gets really hard to
know what’s actually happening!

CSE333 lec 9 C++.1//10-13-17 // Perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc

#ig de dlib>
&L #include <string>
using namespace std;

int main(int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}
- J

C++’s standard library has a std: :string class!

- Include the <string> header to use it

- http://www.cplusplus.com/reference/string/

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc
#include <cstdlib>
#include <string>

Ausing namespace std;

int main(int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}
- J

The “using” keyword introduces part of a namespace, or
an entire namespace, into the current region

- using namespace std; -- imports all names from std::

- using std::cout; --imports only std::cout

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc
#include <cstdlib>
#include <string>

using namespace std;

10t SRl 1°G char **argv) ({
| World!");
cou ello << endl;
return EXIT SUCCESS;

}
- J

>e

We're instantiating a std: :string Object on the stack

- passing the C string “Hello, World!” to its constructor method

» hello is deallocated (and its destructor invoked) when main returns

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char **argv) {
string.hallo ("Hello, World!");
<X endl;
retul i __SUCCESS;

}
- J

The C++ string library overloads the << operator as well

- defines a function (not an object method) that is invoked when
the LHS is an ostream and the RHS is a std::string

» http://www.cplusplus.com/reference/string/operator<</

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc
#include <cstdlib>
#include <string>

using namespace std;

in(int argc, char **argv) {

< 21l1lo ("Hellao Horld!'") ;
hello &< endl; 3
"=TUTn EXIT SUC ;

Note the side-effect of using namespace std;

- can now refer to std: :string by string, std::cout
by cout, and std: :endl by endl

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

string concatenation

-

N
#include <iostream> concat.cc
#include <cstdlib>

#include <string>

using namespace std;
int main(int argc, char **argv) ({

string hellaol=Hallgl) -
hello hello + " there'
cout << hellO endl ;

return EXIT_SUCCESS;

_

The string class overloads the “+” operator

- creates and returns a new string that is the concatenation of
LHS and RHS

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

string assignment

#include <iostream>
#include <cstdlib>
#include <string>

N
concat.cc

using namespace std;

int main(int argc, char **argv) ({
Shaedng hello("Hello") ;

ello + " there";
cout << hello << endl;
return EXIT_SUCCESS;

- J
The string class overloads the “=" operator

- copies the RHS and replaces the string’s contents with it

» S0, the full statement (i) “+” creates a string that is the concatenation of
hello’s current contents and “ there”, and (ii) “=” creates a copy of the

concatenation to store in hello. Without the syntactic sugar it is:
hello.operator=(hello.operator+ (" there"))

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

stream manipulators

e I
#include <iostream> helloworld3.cc

#include < dlib>
#includ

using namespace std;

int main(int argc, char **argv) ({

cout << "Hi! " << setw(4) <K 5 << " " K< 5 << endl;
cout << hex <K 16 << " " K< 13 << endl;
cout << dec <K 16 << " " K<L 13 << endl;

return EXIT_SUCCESS;

}
. J

lomanip defines a set of stream manipulator functions

- pass them to a stream to affect formatting

» http://www.cplusplus.com/reference/iostream/manipulators/

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

stream manipulators

e I
#include <iostream> helloworld3.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, charXx*argv) ({
cout << "Hi! " 5 <K< " " <K 5 <K< endl;
cout << hex << 16 << 13 << endl;

cout << dec <K 16 << " " K<L 13 << endl;
return EXIT_SUCCESS;

}
. J

setw(x) sets the width of the next field to x

- only affects the next thing sent to the output stream

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

stream manipulators

e I
#include <iostream> helloworld3.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) ({

cout << "Hi! " << setw(4) <K 5 << " " K< 5 << endl;
cout & hex <PD16 << " " << 13 << endl;
cout & dec <P16 << " " << 13 << endl;

return EXIT_SUCCESS;

}
. J

hex sets the stream to output integers in hexadecimal

- stays in effect until you set the stream to some other base

- hex, dec, oct are your choices

CSE333 lec 9 C++.1 // 10-13-17 // Perkins

You can still use printt, though

helloworld4.cc |

#include <cstdio>
#include <cstdlib>

int main(int argc, char **argv) {
printf ("hello from C\n");
return EXIT SUCCESS;

}

- J

C is (roughly) a subset of C++

- Can mix C and C++ idioms if needed to work with existing
code, but avoid mixing if you can - use C++(11)

CSE333 lec 9 C++.1//10-13-17 // Perkins

Reading

N
#include <iostream> helloworld5.cc
#include <cstdlib>

using namespace std;

int main(int argc, char **argv) ({
int num;
cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;
return EXIT SUCCESS;

}
. J

std::cin is an object instance of class istream

- supports the >> operator for “extraction”

- ¢in also has a getline() method and methods to detect and
clear errors (also, if (cin>>n) ... is true if success!)

CSE333 lec 9 C++.1//10-13-17 // Perkins

Exercise T

Write a C++ program that:

- uses streams 10:
» prompts the user to type in 5 floats
» prints them out in opposite order

» with 4 digits of precision

CSE333 lec 9 C++.1//10-13-17 // Perkins

See you on Wednesday!

CSE333 lec 9 C++.1//10-13-17 // Perkins

