
CSE 333
Systems Programming

Hal Perkins
Winter 2016

Bonus Lecture– Function Pointers and Objects in C

Reminders

•  Project due tomorrow night, 11 pm

•  Final exam Wed., 2:30-4:20
–  Review & wrapup in section tomorrow
–  Last-minute Q&A Tue. 4:30, GUG 218
–  Topic list + old exams on the web

•  Biased towards stuff since the midterm, but
everything is fair game

2

Agenda

•  Function pointers in C/C++ (review/reminder)

•  Objects in C – what is “this” anyway?

•  Objects in C – virtual functions / dynamic dispatch

3

Function pointers (reminder)

•  “Pointers to code” are almost as useful as “pointers to
data”. (But the syntax is painful in C.)

•  (Somewhat silly) example:
void app_arr(int len, int * arr, int (*f)(int)) {
 for(int k = 0; k < len; k++)
 arr[k] = (*f)(arr[k]);

}
int twox(int i) { return 2*i; }
int sqr(int i) { return i*i; }
void twoXarr(int len, int* arr) {app_arr(len,arr,&twox);}
void sqr_arr(int len, int* arr) { app_arr(len,arr,&sqr); }

4

C function-pointer syntax

•  C syntax: painful and confusing. Rough idea: The compiler
“knows” what is code and what is a pointer to code, so
you can write less than we did on the last slide:

arr[k] = (*f)(arr[k]);
 ⇒ arr[k] = f(arr[k]);

app_arr(len,arr,&twox);
 ⇒ app_arr(len,arr,twox);

•  A function pointer in C/C++ is just the address of the first
instruction of the function body

•  Typedefs make function-pointer declarations less painful
•  Examples: Compute integral with (pointer to) function to

integrate and bounds as parameters (int1.c, int2.c)

5

Objects in C++

•  What is an object?
–  Simplest answer: a collection of data and functions

(methods) to provide behavior
–  Methods can reference instance variables as

simple names if unambiguous, or as this->name
(always)

–  see thing1.cc, thing2.cc
•  Only non-virtual (static dispatch) for now

6

So what is “this” anyway?

•  In C++ this is a pointer to the current object when a
member function is called

•  If the object has type T, “this” has type T*

•  But how does it really work? There are no “this”
pointers in the x86-64 instruction set…

•  Answer: the compiler translates member functions to
ordinary x86-64 code, and adds an implicit, hidden
“this” parameter to every member function definition
and call

7

Source-level view

•  What you write:
int getX() {
 return x_
}
void setX(int x) {
 x_ = x;
}
…
n= t1.getX();
t2->setX(333);

•  What you really get:
getX(Thing *this) {
 return this->x_
}
void setX(Thing *this, int x) {
 this->x_ = x;
}
…
n= t1.getX(&t1);
t2->setX(t2, 333);

8
See thing.c

What is an object, really?

•  Methods (behavior, functions) + state (instance vars)
•  Actual representation (per object)

–  pointer to class vtable
–  state (instance vars)

•  Vtables
–  One per class
–  Pointers to all virtual methods for that class (either

inherited or overridden/added by class)
•  Virtual function call – indirect through vtable
•  Non-virtual function call – resolved using static type

of variable that references the object
9

Compiling obj.m(arguments)

1.  Determine (static) type of obj from variable
declaration or expression type. Call it T.

2.  Verify that type T has a suitable method m with
correct number and types of parameters.
–  If more than one such method use overloading

rules to pick correct one. Reject as ambiguous if
no unique “best” match.

3.  Generate function call
–  If method m is not virtual, call T::m
–  If method m is virtual, call m indirectly via vtable

pointer in obj (obj->vtbl->m(args))

10

Examples

•  widget.cc – C++ code with class, derived class, and
mix of virtual and non-virtual functions

•  widget.c – same program in C with explicit vtables
(structs with pointers to functiosn) and vtable pointers
in objects

11

