
CSE333 lec 19 HTTP // 02-29-16 // Perkins

CSE 333
Lecture 19 -- HTTP

Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lec 18 networks.3 // 02-28-14 // Perkins

Administrivia

Server-side programming exercise due before class Wed.

HW4 due 8 days later(!)
- How’s it look?

Today: http, end of networking/web

Rest of the quarter: concurrency, threads, and processes
- including a pthreads tutorial/demo in section this week

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Let’s dive down into HTTP

A client establishes one or more TCP connections to a server
- the client sends a request for a web object over a connection, and

the server replies with the object’s contents

- we have to figure out how let the client and server communicate
their intentions to each other clearly

- we have to define a protocol

I’d like “foo.html”

Found it, here it is: (foo.html)

CSE333 lec 19 HTTP // 02-29-16 // Perkins

HTTP is a “protocol”
Protocol: the rules governing the exchange of messages,
and the format of those messages, in a computing system

- what messages can a client exchange with a server?

‣ what do the messages mean?

‣ what are legal replies to a message?

‣ what is the syntax of a message?

- what sequence of messages is legal?

‣ how are errors conveyed?

A protocol is (roughly) the network equivalent of an API

CSE333 lec 19 HTTP // 02-29-16 // Perkins

HTTP
Hypertext transport protocol

- a request / response protocol

‣ a client (web browser) sends a request to a web server

‣ the server processes the request, sends a response

- typically, a request asks the server to retrieve a resource

‣ a resource is an object or document, named by a URI

- a response indicates whether the server succeeded

‣ and, if so, it provides the content of the requested response

CSE333 lec 19 HTTP // 02-29-16 // Perkins

An HTTP request
[METHOD] [request-uri] HTTP/[version]\r\n

[fieldname1]: [fieldvalue1]\r\n

[fieldname2]: [fieldvalue2]\r\n

[...]

[fieldnameN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

let’s use “nc” to see a real request

CSE333 lec 19 HTTP // 02-29-16 // Perkins

HTTP methods
There are three commonly used HTTP methods
- GET: “please send me the named document”

- POST: “I’d like to submit data to you, such as a file upload”

- HEAD: “send me the headers for the named object, but not
the object. (I’d like to see if my cached copy is still valid.)”

There are several rarely used methods:
- PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

‣ TRACE: “if there are any proxies or caches in between me and the
server, please speak up!”

CSE333 lec 19 HTTP // 02-29-16 // Perkins

HTTP versions

Most browsers and servers speak HTTP/1.1
- “version 1.1 of the HTTP protocol”

‣ http://www.w3.org/Protocols/rfc2616/rfc2616.html

- introduced around 1996 to fix shortcomings of HTTP/1.0
‣ better performance, richer caching features, better support for

multi-homed servers, and much more

‣ more complicated to implement than HTTP/1.0

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Client headers
The client can provide zero or more request “headers”
- they provide information to the server, or modify how the

server should process the request

You’ll encounter many in practice
- Host: the DNS name of the server [why?]

- User-Agent: an identifying string naming the browser [why?]

- Accept: the content types the client prefers or can accept

- Cookie: an HTTP cookie previously set by the server

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Example...
GET /foo/bar.html HTTP/1.1
Host: futureproof.cs.washington.edu:5555
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2)
AppleWebKit/536.26.17 (KHTML, like Gecko) Version/6.0.2 Safari/
536.26.17
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/
*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: __utma=59807807.1547453334.1214335349.1301330421.1301339949.
30; __utmz=59807807.1300728257.27.14.utmcsr=google|utmccn=(organic)|
utmcmd=organic|utmctr=csgordon@u.washington.edu;
__utma=80390417.1521666831.1201286098.1302710464.1302717901.34;
__utmz=80390417.1301950604.31.15.utmcsr=cs.washington.edu|
utmccn=(referral)|utmcmd=referral|utmcct=/education/courses/
cse333/11sp/; __qca=P0-1872143622-1294952393928
Connection: keep-alive

CSE333 lec 19 HTTP // 02-29-16 // Perkins

An HTTP response
HTTP/[version] [status code] [reason]\r\n

[fieldname1]: [fieldvalue1]\r\n

[fieldname2]: [fieldvalue2]\r\n

[...]

[fieldnameN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

let’s use “telnet” to see a real response

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Status codes, reason phrase
Code: a computer-readable outcome of the request
- three digit integer; first digit identifies the response category

‣ 1xx: some kind of informational message

‣ 2xx: success of some kind

‣ 3xx: redirects the client to a different URL

‣ 4xx: the client’s request contained some error

‣ 5xx: the server experienced an error

Reason phrase: human-readable explanation
- e.g., “OK” or “Moved Temporarily”

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Common status lines
HTTP/1.1 200 OK
- the request succeeded, the requested object is sent

HTTP/1.1 404 Not Found
- the requested object was not found

HTTP/1.1 301 Moved Permanently
- the object exists, but its name has changed

- the new URL is given in the “Location:” header

HTTP/1.1 500 Server Error
- the server had some kind of unexpected error

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Server headers
The server can provide zero or more response “headers”
- they provide information to the client, or modify how the client

should process the response

You’ll encounter many in practice
- Server: a string identifying the server software [why?]

- Content-Type: the type of the requested object

- Content-Length: size of requested object [why?]

- Last-Modified: a date indicating the last time the request
object was modified [why?]

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Example

HTTP/1.1 200 OK
Date: Fri, 27 May 2011 17:05:53 GMT
Server: Apache/2.2.19 (Fedora)
Last-Modified: Fri, 27 May 2011 17:04:51 GMT
ETag: "2740640-52-4a444ef9392c0"
Accept-Ranges: bytes
Content-Length: 82
Content-Type: text/html
Content-Language: en

<html><body>
Awesome!!
</body></html>

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Cool HTTP/1.1 features
“Chunked Transfer-Encoding”
- a server might not know how big a response object is

‣ e.g., you’re dynamically generating the content in response to a
query or other user input

- how do you send Content-Length?
‣ could wait until you’ve finished generating the response, but that’s

not great in terms of latency

‣ instead, want to start sending response right away

- chunked message body: response is series of chunks
‣ try with http://www.cs.washington.edu/

CSE333 lec 19 HTTP // 02-29-16 // Perkins

Cool HTTP/1.1 features
Persistent connections
- establishing a TCP connection is costly

‣ multiple network “round trips” just to set up the TCP connection

‣ TCP has a feature called “slow start”; slowly grows the rate at
which a TCP connection transmits to avoid overwhelming networks

- a web page consists of multiple objects, and a client probably
visits several pages on the same server
‣ bad idea: separate TCP connection for each object

‣ better idea: single TCP connection, multiple requests

‣ try it on www.cs.washington.edu

CSE333 lec 19 HTTP // 02-29-16 // Perkins

See you on Wednesday!

