
CSE 333 – SECTION 7
Client-Side Network Programming

Overview
• Domain Name Service (DNS)
• Client side network programming steps and calls
•  dig and ncat tools

Network programming for the client side
• Recall the five steps, here’s the corresponding calls:

1.  getaddrinfo() to figure out IP address and port to talk to
2.  socket() for creating a socket
3.  connect() to connect to the server
4.  read() and write() to transfer data through the socket
5.  close() to close the socket

Network programming for the client side
• Recall the five steps, here’s the corresponding calls:

1.  getaddrinfo() to figure out IP address and port to talk to
2.  socket() for creating a socket
3.  connect() to connect to the server
4.  read() and write() to transfer data through the socket
5.  close() to close the socket

Network Addresses
•  For IPv4, an IP address is a 4-byte tuple
•  - e.g., 128.95.4.1 (80:5f:04:01 in hex)
•  For IPv6, an IP address is a 16-byte tuple
•  - e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33
•  ‣ 2d01:0db8:f188::1f33 in shorthand

DNS – Domain Name System/Service
• A hierarchical distributed naming system any resource

connected to the Internet or a private network.
• Resolves queries for names into IP addresses.
•  The sockets API lets you convert between the two.

•  Aside: getnameinfo() is the inverse of getaddrinfo()

•  Is on the application layer on the Internet protocol suite.

Dig demo
dig +trace attu.cs.washington.edu

Resolving DNS names
•  The POSIX way is to use getaddrinfo().
• Set up a “hints” structure with constraints, e.g. IPv6, IPv4,

or either.
•  Tell getaddrinfo() which host and port you want resolved.
• Host - a string representation: DNS name or IP address
•  getaddrinfo() gives you a list of results in an “addrinfo”

struct.

IPv4 address structures
// Port numbers and addresses are in *network order*.

// A mostly-protocol-independent address structure.
struct sockaddr {
 short int sa_family; // Address family; AF_INET, AF_INET6
 char sa_data[14]; // 14 bytes of protocol address
};

// An IPv4 specific address structure.
struct sockaddr_in {
 short int sin_family; // Address family, AF_INET == IPv4
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Same size as struct sockaddr
};

struct in_addr {
 uint32_t s_addr; // IPv4 address
};

IPv6 address structures
// A structure big enough to hold either IPv4 or IPv6 structures.
struct sockaddr_storage {
 sa_family_t ss_family; // address family
 // a bunch of padding; safe to ignore it.
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};
// An IPv6 specific address structure.
struct sockaddr_in6 {
 u_int16_t sin6_family; // address family, AF_INET6
 u_int16_t sin6_port; // Port number
 u_int32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 u_int32_t sin6_scope_id; // Scope ID
};
struct in6_addr {
 unsigned char s6_addr[16]; // IPv6 address
};

getaddrinfo() and structures
int getaddrinfo(const char *hostname, // hostname to look up
 const char *servname, // service name
 const struct addrinfo *hints, // desired output type
 struct addrinfo **res); // result structure

// Hints and results take the same form. Hints are optional.
struct addrinfo {
 int ai_flags; // Indicate options to the function
 int ai_family; // AF_INET, AF_INET6, or AF_UNSPEC
 int ai_socktype; // Socket type, (use SOCK_STREAM)
 int ai_protocol; // Protocol type
 size_t ai_addrlen; // INET_ADDRSTRLEN, INET6_ADDRSTRLEN
 struct sockaddr *ai_addr; // Address (input to inet_ntop)
 char *ai_canonname; // canonical name for the host
 struct addrinfo *ai_next; // Next element (It’s a linked list)
};

// Converts an address from network format to presentation format
const char *inet_ntop(int af, // family (see above)

 const void * restrict src, // in_addr or in6_addr
 char * restrict dest, // return buffer
 socklen_t size); // length of buffer

Generating these structures
#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in sa; // IPv4
 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in.
 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));
 return EXIT_SUCCESS;
}

Generating these structures
#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in6 sa6; // IPv6
 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.
 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
 printf(“%s\n”, astring);
 return EXIT_SUCCESS;
}

DNS Resolution Demo

dnsresolve.cc

Network programming for the client side
• Recall the five steps, here’s the corresponding calls:

1.  getaddrinfo() to figure out IP address and port to talk to
2.  socket() for creating a socket
3.  connect() to connect to the server
4.  read() and write() to transfer data through the socket
5.  close() to close the socket

socket() – Create the socket
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, // e.g. AF_NET, AF_NET6
 int type, // e.g. SOCK_STREAM, SOCK_DGRAM
 int protocol); // Usually 0

Note that socket() just creates a socket, it isn’t bound yet to
a local address.

Demo

socket.cc

Network programming for the client side
• Recall the five steps, here’s the corresponding calls:

1.  getaddrinfo() to figure out IP address and port to talk to
2.  socket() for creating a socket
3.  connect() to connect to the server
4.  read() and write() to transfer data through the socket
5.  close() to close the socket

connect() – Establish the connection
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, // socket fd from step 2
 struct sockaddr *serv_addr, // server info

 // from step 1
 int addrlen); // size of serv_addr struct

Demo (Along with ncat demo)

connect.cc
(nc –lv 5454 to create listener)

Pictorially

Web server

fd 5 fd 8 fd 9 fd 3

in
de

x.
ht

m
l

pi
c.

pn
g

client client

10.12.3.4 : 5544 44.1.19.32 : 7113

128.95.4.33

80 80

Internet

file
descriptor type connected to?

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP
socket

local: 128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP
socket

local: 128.95.4.33:80
remote: 10.12.3.4:5544

OS’s descriptor table

Network programming for the client side
• Recall the five steps, here’s the corresponding calls:

1.  getaddrinfo() to figure out IP address and port to talk to
2.  socket() for creating a socket
3.  connect() to connect to the server
4.  read() and write() to transfer data through the socket
5.  close() to close the socket

read() and write()
• By default, both are blocking calls
•  read() will wait for some data to arrive, then immediately

read whatever data has been received by the network
stack
•  Might return less data read than asked for
•  Blocks while data isn’t received

•  conversely, write() enqueues your data to OS’ send buffer,
then returns while OS does the rest in the background
•  When write returns the receiver probably hasn’t received the data

yet
•  When the send buffer fills up, write() will also block

Demo (Along with more ncat)

sendreceive.cc
(nc –l 5454 to create listener)

Network programming for the client side
• Recall the five steps, here’s the corresponding calls:

1.  getaddrinfo() to figure out IP address and port to talk to
2.  socket() for creating a socket
3.  connect() to connect to the server
4.  read() and write() to transfer data through the socket
5.  close() to close the socket

close() – Close the connection
#include <unistd.h>

int close(int sockfd);

Remember to close the socket when you’re done!

Section Exercise
•  The TA has set up a game server for you to communicate

with (gameserver.py)
• Using the sample client code from lecture and what you

know about I/O calls in C++, your job is to implement a C+
+ client called gameclient.cc such that you can
communicate with the game server much like you can
with the netcat tool

