CSE 333

Lecture 21 -- fork, pthread_create

Hal Perkins
Department of Computer Science & Engineering
University of Washington

A
4

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Administrivia

HW4 is due Wednesday night

<panic> if you haven’t started yet </panic>

Usual late days apply if you have any left
pthreads exercise due Monday before class
Please fill out course evals when they're available

Final exam next Friday in class
Review in section next week

Topic list and old exams on web now

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Some common HW4 bugs

Your server works, but is really really slow
check the 2nd argument to the QueryProcessor constructor
Funny things happen after the first request

make sure you're not destroying the HT TPConnection object
too early (e.g., falling out of scope in a while loop)

Server crashes on blank request

make sure you handle the case that read() [or WrappedRead]
returns O

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Previously

We implemented a searchserver, but it was sequential

It processed requests one at a time, In spite of client
interactions blocking for arbitrarily long periods of time

this led to terrible performance
Servers should be concurrent

process multiple requests simultaneously
issue multiple I/O requests simultaneously
overlap the /O of one request with computation of another

utilize multiple CPUs / cores

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Today

We'll go over three versions of searchserver

sequential
concurrent
Processes [fork()]
threads [pthread_create()]

Alternative (which we won’t get to): non-blocking, event driven
Version

non-blocking I/0 [select()]
Reference: Computer Systems: A Programmer’s Perspective
351 textbook: good source for process/thread/OS concepts

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Sequential

4)

listen fd = Listen(port);

while (1) {

pseudocode: client fd = accept(listen £d);
buf = read(client fd);

resp = ProcessQuery (buf) ;
write(client fd, resp);
close(client fd);

look at searchserver_sequential/

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Whither sequential?

Benefits

super simple to build

Disadvantages

Incredibly poorly performing
one slow client causes all others to block

poor utilization of network, CPU

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

fork()

pid t fork(void);

Fork is used to create a new process (the “child”) that is
an exact clone of the current process (the “parent”)

everything is cloned (except threads)
all variables, file descriptors, open sockets, etc.

the heap, the stack, etc.

primarily used in two patterns
servers: fork a child to handle a connection

shells: fork a child, which then exec’s a new program

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

fork() and address spaces

Remember this picture...”

a process executes within an
address space

the address space includes:
a stack (for stack frames)
heap (for dynamically allocated data)
text segment (containing code)

etc.

OXFFFFFFFF

SP —

PC—

0x00000000

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

fork() and address spaces

OS kernel [protected] OS kernel [protected]
Fork causes the OS to clone stack stack
the address space, creating SP— SP—
a brand new process
the new process starts “,fe as shared libraries shared libraries
a copy the old process in
(nearly) every way | |
the copies of the heap, heap (malloc/free) heap (malloc/free)
stack, text segment, etc. are
(nearly) identical read/write segment read/write segment
.data, .bss .data, .bss
the new process has copies
, read-only segment read-only segment
of the parent’s data PC— .text, .rodata PC— lext, .rodata
structures, stack-allocated
variables, open file
descriptors, and so on ~.. i .
parent ~ TT=-===7 child

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

fork()

fork() has peculiar semantics

the parent invokes fork() oarent

the operating system clones

fork()
the parent

both the parent and the child 0S
return from fork

parent receives child’s pid

child receives a “0” as pid

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

fork()

fork() has peculiar semantics

the parent invokes fork() oarent child
the operating system clones
the parent s, cone
both the parent and the child 53

return from fork

parent receives child’s pid

child receives a “0” as pid

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

fork()

fork() has peculiar semantics

the parent invokes fork()

parent child
the operating system clones ohild pic 0
the parent
both the parent and the child 0S
return from fork

parent receives child’s pid

child receives a “0” as pid

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

fork()

fork_example.cc

Concurrency with processes

The parent process blocks on accept(), waiting for a
new client to connect

when a new connection arrives, the parent calls fork() to
create a child process

the child process handles that new connection, and exit()’s
when the connection terminates

Remember that children become “zombies” after death

option a) parent calls wait() to “reap” children

option b) use the double-fork trick

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Graphically

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client —

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

-
-
A
-
Al

(@I
O. -
D
25 .
(VN
O/ *.

-
A

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

server

server

»
-

™, fork() child

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

— g — server
. T~ server
“~— server

Dy
-
~

-

fork() grandchild

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client j—sz--m-------- — server

child exit()’s / parent wait()’s

“~— server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

server

server

parent closes its
client connection

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

server

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

client

[K
I — Server
-]
K server
R4 "4_ Server
s — server

~
~

-
-—

-y
-
-~
~

-
-

., fork() grandchild

" exit()

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

client

server

server

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

client

client

client

Graphically

server

server

server

server

- [+
client b= ---eeeeenn--
|
: [
client ---==--------
-]
: [
client —------------
-]
: [k
client —----=--------
-]
, [k
client —---==--------
~ |
: [k
client ---=---------
~ |

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

server

server

server

server

server

server

Concurrent with processes

look at searchserver_processes

Whither concurrent processes?

Benefits
almost as simple as sequential
iNn fact, most of the code is identicall

parallel execution; good CPU, network utilization

Disadvantages

processes are heavyweight
relatively slow to fork
context switching latency is high

communication between processes is complicated

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

How slow is fork?

run forklatency.cc

Implications?

0.25 ms per fork
maximum of (1000 / 0.25) = 4,000 connections per second per core
~0.5 billion connections per day per core
fine for most servers
too slow for a few super-high-traffic front-line web services
Facebook serves O(750 billion) page views per day

would need 3,000 -- 6,000 cores just to handle fork(),
l.e., without doing any work for each connection!

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

threads

Threads are like lightweight processes

like processes, they execute concurrently
multiple threads can run simultaneously on multiple cores/CPUs
unlike processes, threads cohabit the same address space
the threads within a process see the same heap and globals
threads can communicate with each other through variables
but, threads can interfere with each other: need synchronization

each thread has its own stack

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

threads and the address space

S Pparent -

PCparent -

OS kernel [protected]

stackparent

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
text, .rodata

Pre- thread create

one thread of execution
running in the address space

the “main” thread

therefore, one stack, SP, PC

that main thread invokes a
function to create a new thread

typically “pthread_create()”

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

threads and the address space

SPparent -

SPehilc —

PCechid —
PCparent -

OS kernel [protected]

stackparent

stackehild

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

Post- thread create

two threads of execution
running in the address space

the “main” thread (parent)
the child thread

thus, two stacks, SPs, PCs

both threads share the heap
and text segment (globals)

they can cooperatively modify
shared data

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

threads

see thread_example.cc

CSE333 lec 21 concurren

cy.2 //08-12-16

// Perkins

Concurrent server with threads

A single process handles all of the connections

but, a parent thread forks (or dispatches) a new thread to
handle each connection

the child thread:

handles the new connection

exits when the connection terminates

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Graphically

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client —

-~
-
-~
-~
-
-~
~
-
~o
-~

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client |—---s-remmerenenans — %’ -----

> pthread_create()

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client |=----oreeeeranees | %‘,

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client —----mmmmmmeeaas _

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

client

~

.
-m=

pthread_create()

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Graphically

client

client

client

client

client

client

B
S
-
L 1
oo
B
S
B
S
-

. .
. .
Ky \ K .
0
Ky D /
., / 2
s, ’ /
K . Y
‘ ! !
Ky ’ o
/
A .
Ky . R
Ky ' /'
Ky . /
" ’
y . S

shared
data

structures

server

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Concurrent with threads

look at searchserver threads/

CSE333 lec 21 concurrency.2 // 08-12-16

// Perkins

Whither concurrent threads”?

Benefits
straight-line code
still the case that much of the code is identical to sequential!
parallel execution; good CPU, network utilization
lower overhead than processes
shared-memory communication is possible
Disadvantages

synchronization is complicated

shared fate within a process; one rogue thread can hurt you badly

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

How fast is pthread_create?

run threadlatency.cc

Implications?

0.036 ms per thread create; ~10x faster than process forking
maximum of (1000 / 0.018) = ~60,000 connections per second
~10 billion connections per day per core

much better

But, writing safe multithreaded code can be serious voodoo

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Thread Pools

In real servers we'd like to avoid overhead needed to
create a new thread or process for every request

|dea: thread pools

Create a set of worker threads or processes on server
startup, put them in a queue

When a request arrives, remove the first worker thread from
the queue and assign it to handle the request

When a worker is done it places itself back on the queue and
then sleeps until dequeued and handed a new request

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Threads and races

What happens if two threads try to mutate the same data
structure?

they might interfere in painful, non-obvious ways, depending
on the specifics of the data structure

imagine if two threads try to push an item onto the head of the
linked list at the same time

depending on how the threads interleave, you might end up with a
correct answer, or you might break the data structure altogether

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Simple “race” example

If no milk, buy some more " h

liveness: if out, somebody buys

if ('milk) {
buy milk
}

safety: at most one person buys

What happens with multiple
threads? \ J

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Simple “race” example

if (!'note) {
if ('milk) {
leave note

Does this fix the problem? buy milk

remove note

}
}

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

Synchronization

Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

need some mechanism to coordinate the threads
“let me go first, then you go”
many different coordination mechanisms have been invented

take csed51 for details

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Locks

lock acquire
wait until the lock is free, then take it
lock release

release the lock

if other threads are waiting for it
wake up exactly one of them
give it the lock

simplifies concurrent code

prevents more than one thread from
entering a critical section

. non-critical code ...
lock.acquire() ;
critical section

lock.release() ;

. non-critical code ...

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Simple “race” solution

What is the critical section? - A
checking for milk milk lock.lock ()
: o if ('milk
buying more milk if out 1 béym;il])({

}
These two steps must be

. . i milk lock.unlock ()
uninterrupted, i.e., atomic oRTORE ERAE

solution: protect the critical
section with a lock

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

pothreads and locks

pthread_mutex_init()

creates a mutex (a.k.a. a lock)

pthread_mutex_lock() see lock_example.cc
graps the lock

pthread_mutex_unlock()

releases the lock

CSE333 lec 21 concurrenc y.2 // 08-12-16 // Perkins

C++ 11 Threads

C++ 11 added threads and concurrency to the libraries
<thread> - thread objects
<mutex> - locks to handle critical sections
<condition_variable> - used to block objects until notified to resume
<atomic> - indivisible, atomic operations
<future> - asynchronous access to data

Might be built on top of <pthread.h>, maybe not

Definitely use in C++ 11 code, but pthread will still be around
for a long, long time

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Exercise T

Write a simple “proxy” server
forks a process for each connection

reads an HT TP request from the client

relays that request to www.cs.washington.edu

reads the response from www.cs.washington.edu

relays the response to the client, closes the connection

Try visiting your proxy using a web browser :)

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

Exercise 2

Write a client program that:

loops, doing “requests” in a loop. Each request must:
connect to one of the echo servers from the lecture
do a network exchange with the server

close the connection
keeps track of the latency (time to do a request) distribution
keeps track of the throughput (requests / s)

prints these out

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

See you on Wednesday !

CSE333 lec 21 concurrency.2 // 08-12-16 // Perkins

