
CSE333 lec 20 concurrency // 08-10-16 // Perkins

CSE 333
Lecture 20 - intro to concurrency

Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Administrivia
HW4 due in a week, 11 pm w/usual late days

‣ How’s it going?

‣ Remember: no changes allowed in header files, Makefile, or
specifications.

Reminder: watch your late days! (4 max per quarter)
- Check the “late days remaining” entry in the gradebook

Sections tomorrow: pthread tutorial
- Last exercise posted tomorrow, due Monday: pthreads

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Goals

Understand concurrency
- why it is useful

- why it is hard

Exposure to concurrent programming styles
- using multiple threads or multiple processes

- using asynchronous or non-blocking I/O
‣ “event-driven programming”

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Let’s imagine you want to...
...build a web search engine.
- you need a Web index

‣ an inverted index (a map from “word” to “list of documents
containing the word”)

‣ probably sharded over multiple files

- a query processor
‣ accepts a query composed of multiple words

‣ looks up each word in the index

‣ merges the result from each word into an overall result set

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Architecturally

index
file

index
file

index
file

query
processor client

client

client

client

client

CSE333 lec 20 concurrency // 08-10-16 // Perkins

A sequential implementation
 doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist {
 doclist.append(file.read(hit));
 }
 return doclist;
 }

 main() {
 while (1) {
 string query_words[] = GetNextQuery();
 results = Lookup(query_words[0]);
 foreach word in query[1..n] {
 results = results.intersect(Lookup(word));
 }
 Display(results);
 }
 }

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Visually

time

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

f
i
l
e
.
r
e
a
d
(
)

L
o
o
k
u
p
(
)

f
i
l
e
.
r
e
a
d
(
)

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

•••

query
I
n
t
e
r
s
e
c
t

R
e
s
u
l
t
s
(
)

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Simplifying

time

I
/
O

1
.
b

C
P
U

1
.
a

query 1

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

query 2

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

query 3

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Simplifying

time

I
/
O

1
.
b

C
P
U

1
.
a

query 1

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

query 2

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

query 3

queries don’t run until
earlier queries finish

the CPU is idle
most of the time

only one I/O request
at a time is in flight

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Sequentiality can be inefficient
Only one query is being processed at a time
- all other queries queue up behind the first one

The CPU is idle most of the time
- it is “blocked” waiting for I/O to complete

‣ disk I/O can be very, very slow

At most one I/O operation is in flight at a time
- misses opportunities to speed I/O up

‣ separate devices in parallel, better scheduling of single device, ...

CSE333 lec 20 concurrency // 08-10-16 // Perkins

What we want...concurrency
A version of the program that executes multiple tasks
simultaneously
- it could execute multiple queries at the same time

‣ while one is waiting for I/O, another can be executing on the CPU

- or, it could execute queries one at a time, but issue  
I/O requests against different files/disks simultaneously
‣ it could read from several different index files at once, processing the

I/O results as they arrive

Concurrency != parallelism
- parallelism is when multiple CPUs work simultaneously on 1 job

CSE333 lec 20 concurrency // 08-10-16 // Perkins

One way to do this

Use multiple threads or processes
- as a query arrives, fork a new thread (or process) to handle it

‣ the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

‣ the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on I/O

- the OS context switches between threads / processes
‣ while one is blocked on I/O, another can use the CPU

‣ multiple threads’ I/O requests can be issued at once

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Multithreaded pseudocode
 main() {
 while (1) {
 string query_words[] = GetNextQuery();
 ForkThread(ProcessQuery());
 }
 }

 doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist
 doclist.append(file.read(hit));
 return doclist;
 }

 ProcessQuery() {
 results = Lookup(query_words[0]);
 foreach word in query[1..n] {
 results = results.intersect(Lookup(word));
 }
 Display(results);
 }

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Multithreaded, visually

time

I
/
O

1
.
b

C
P
U

1
.
a

query 1

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

query 2

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

query 3

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Whither threads?
Advantages
- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages
- if your threads share data, need locks or other synchronization

‣ very bug-prone and difficult to debug

- threads can introduce overhead
‣ lock contention, context switch overhead, and other issues

- need language support for threads

CSE333 lec 20 concurrency // 08-10-16 // Perkins

One alternative

Fork processes instead of threads
- advantages:

‣ no shared memory between processes, so no need to worry about
concurrent accesses to shared variables / data structures

‣ no need for language support; OS provides “fork”

- disadvantages:
‣ more overhead than threads to create, context switch

‣ cannot easily share memory between processes, so typically share
through the file system

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Another alternative

Use asynchronous or non-blocking I/O
- your program begins processing a query

‣ when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

‣ the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

‣ when data becomes available, the OS lets your program know

- your program (almost never) blocks on I/O

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Event-driven programming
Your program is structured as an event-loop

void dispatch(task, event) {
 switch(task.state) {
 case READING_FROM_CONSOLE:
 query_words = event.data;
 async_read(index, query_words[0]);
 task.state = READING_FROM_INDEX;
 return;
 case READING_FROM_INDEX:
 ...etc.
 }
}

while(1) {
 event = OS.GetNextEvent();
 task = lookup(event);
 dispatch(task, event);
}

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Asynchronous, event-driven

time

I
/
O

1
.
b

C
P
U

1
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

1
.
e

I
/
O

2
.
b

C
P
U

2
.
a

I
/
O

2
.
d

C
P
U

2
.
c

C
P
U

2
.
e

I
/
O

3
.
b

C
P
U

3
.
a

I
/
O

3
.
d

C
P
U

3
.
c

C
P
U

3
.
e

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Non-blocking vs. asynchronous
Non-blocking I/O (network, console)
- your program enables non-blocking I/O on its fd’s
- your program issues read(), write() system calls

‣ if the read/write would block, the system call returns immediately

- program can ask the OS which fd’s are readable/writeable
‣ program can choose to block while no fds are ready

Asynchronous I/O (disk)
- program tells the OS to begin reading / writing

‣ the “begin_read” or “begin_write” returns immediately
‣ when the I/O completes, OS delivers an event to the program

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Why the difference?

Non-blocking I/O is for networks
- according to Linux, the disk never blocks your program

‣ it just delays it

- but, reading from the network can truly block your program
‣ a remote computer may wait arbitrarily long before sending data

Asynchronous I/O is for files
- primarily used to hide disk latency

‣ asynchronous I/O system calls are messy and complicated :(
‣ instead, typically use a threadpool to emulate asynchronous I/O

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Whither events?
Advantages
- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure
‣ one event handler for each UI event

Disadvantages
- can lead to very complex structure for programs that do lots of

disk and network I/O
‣ sequential code gets broken up into a jumble of small event handlers

‣ you have to package up all task state between handlers

CSE333 lec 20 concurrency // 08-10-16 // Perkins

One way to think about it

Threaded code:
- each thread executes its task sequentially, and per-task state

is naturally stored in the thread’s stack

- OS and thread scheduler switch between threads for you

Event-driven code:
- *you* are the scheduler

- you have to bundle up task state into continuations; tasks do
not have their own stacks

CSE333 lec 20 concurrency // 08-10-16 // Perkins

See you on Friday!

