CSE 333

Lecture 20 - intro to concurrency

Hal Perkins
Department of Computer Science & Engineering
University of Washington

A
4

CSES333 lec 20 concurrenc y // 08-10-16 // Perkins

Administrivia

HW4 due in a week, 11 pm w/usual late days
How’s it going”?

Remember: no changes allowed in header files, Makefile, or
specifications.

Reminder: watch your late days! (4 max per quarter)
Check the “late days remaining” entry in the gradebook

Sections tomorrow: pthread tutorial

Last exercise posted tomorrow, due Monday: pthreads

CSE333 lec 20 concurrency // 08-10-16 // Perkins

(Goals

Understand concurrency
why it is useful
why it is hard

Exposure to concurrent programming styles
using multiple threads or multiple processes

using asynchronous or non-blocking 1/0

“‘event-driven programming”

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Let’s Imagine you want to...

...build a web search engine.

you need a Web index

an inverted index (a map from “word” to “list of documents
containing the word”)

probably sharded over multiple files

a query processor
accepts a query composed of multiple words
looks up each word in the index

merges the result from each word into an overall result set

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Architecturally

iNndex
file

index
file

query
processor

index
file

1]
. | client
’l
k4
L 4
L4
L 4
4
L 4
L 4
é' H
L .3 client
L 4 ‘4
k4 -
o’ e”
L4 ‘o
4"
’4
-
1]
--------------- client
§~~~
§~~
«~ ~
LS S
Y ~~
‘Q ~§. [
. client
ss
<
<
<
<
<
«~
<
5. .
client

CSE333 lec 20 concurrency // 08-10-16 // Perkins

A sequential Implementation

-

~
doclist Lookup(string word) {
bucket = hash (word) ;
hitlist = file.read (bucket);
foreach hit in hitlist {
doclist.append(file.read (hit)) ;
}
return doclist;
}
main() {
while (1) {
string query words[] = GetNextQuery()
results = Lookup (query words[0]);
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;
}
Display (results) ;
}
} CSE333 lec 20 concurrency // 08-1 Oj

b // Perkins

Visually

()AxzondaxsN3l=D

O/I Yaomiau

()AeTdsTQ
()s3Tnsayg 309sisjurl

0/I 3STP

()peax*oTT3F
()dn3oor1

O/I ¥STP

()peox- o113

()dn3ooT

O/I ¥STP

()peax-a1T3
()dnxoor

0/I >Iomiau

() AxzondaxoN31oD
()uteuw

time

query

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Simplifying

57 € Ndd
P'e 0/T
™
5°¢ nao | £
-
O
q € 0/T
2 € Ndo
577 Ndo
Pz 0/T
A
>z nad | §
D)
O
q -z o/T
e Z Ndd
57T Ndo
P'T O/T
5°1 nao
a1 0/T
2 1 Ndo

query 1

time

CSES333 lec 20 concurrency // 08-10-16 // Perkins

Simplifying

only one |/O request «s Q 3! o v
at a time is in flight ™ ™ ™ ™ e
the CPU is idle \ 2 2 (Bl 2 |&
. @) H @) H @
most of the time
ru Q 4} T) query 3
Q] (Q\ (Q\ Q) Q)
- ®) - ®) -]
Ay ~ Ay ~ am
@) H @) H @)
«s Q 4 o) query 2
— — — — — \
D o D o D . , .
]] 3 queries don’t run until
earlier queries finish
query 1
time

CSES333 lec 20 concurrency // 08-10-16 // Perkins

Sequentiality can be inefficient

Only one query is being processed at a time
all other queries queue up behind the first one
The CPU is idle most of the time

it is “blocked” waiting for I/0O to complete

disk /O can be very, very slow

At most one I/O operation is in flight at a time

misses opportunities to speed /O up

separate devices in parallel, better scheduling of single device, ...

CSE333 lec 20 concurrenc y // 08-10-16 // Perkins

What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

It could execute multiple queries at the same time
while one is waiting for 1/0O, another can be executing on the CPU

or, it could execute queries one at a time, but issue
I/0 requests against different files/disks simultaneously

it could read from several different index files at once, processing the
/O results as they arrive

Concurrency = parallelism

parallelism is when multiple CPUs work simultaneously on 1 job

CSE333 lec 20 concurrency // 08-10-16 // Perkins

One way to do this

Use multiple threads or processes

as a query arrives, fork a new thread (or process) to handle it

the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on /O

the OS context switches between threads / processes

while one is blocked on I/O, another can use the CPU

multiple threads’ I/0O requests can be issued at once

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Multithreaded pseudocode

main () {
while (1) {

ForkThread (ProcessQuery()) ;

}
}
-

string query words[] = GetNextQuery()

doclist Lookup (string word) ({
bucket = hash (word) ;
hitlist = file.read (bucket) ;
foreach hit in hitlist
doclist.append(file.read (hit)) ;
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]) ;
foreach word in query[l..n] {

}
Display (results) ;

}

results = results.intersect (Lookup (word)) ;

CSE333 lec 20 conclt |rrmqéy // 08-10-16 // Perkins

ly

visua

Multithreaded

°°¢ NdO

pP°€ 0O/I

°°¢ NdO

Q°¢ NdO

q*¢€ 0/I

P*Z O/I

°°T Ndo

O*¢Z NdO

e*¢ NdoO

query 3

q*Z 0/I

P°T O/I

O°*T NdD

e*Z Ndo

query 2

q°*T O/I

e*T NdO

query 1

time

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Whither threads??

Advantages
you (mostly) write sequential-looking code

if you have multiple CPUs / cores, threads can run in parallel

Disadvantages
If your threads share data, need locks or other synchronization
very bug-prone and difficult to debug

threads can introduce overhead

lock contention, context switch overhead, and other issues

need language support for threads

CSE333 lec 20 concurrency // 08-10-16 // Perkins

One alternative

Fork processes instead of threads

advantages:

Nno shared memory between processes, so N0 need to worry about
concurrent accesses to shared variables / data structures

no need for language support; OS provides “fork”
disadvantages:
more overhead than threads to create, context switch

cannot easily share memory between processes, so typically share
through the file system

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Another alternative

Use asynchronous or non-blocking |/O
your program begins processing a query

when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

when data becomes available, the OS lets your program know

your program (almost never) blocks on 1/0O

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Event-driven programming

Your program Is structured as an event-loop

4 N

void dispatch (task, event) {
switch (task.state) {

case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]);
task.state = READING FROM INDEX;
return;

case READING FROM INDEX:
...etc.

}
}

while (1) {
event = OS.GetNextEvent();
task = lookup (event) ;
dispatch (task, event);

}
\

/
CSE333Tec 20 concurrency // 08-10-16 // Perkins

Asynchronous, event-driven

pP*€ O/I

q*¢€ 0/I

time

Ss°¢ ndo
5 ¢ NdoD
o'z ndd
5°1 ndd
Pz 0/I
P'T O/I | [e ¢ ndd
57 NdoD
5°T NdD
q'z o/1I
q°1 0/I
e°z ndd
e°1 ndd

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Non-blocking vs. asynchronous

Non-blocking I/0 (network, console)
your program enables non-blocking I/O on its fd’s
your program issues read(), write() system calls
if the read/write would block, the system call returns immediately
program can ask the OS which fd’s are readable/writeable
program can choose to block while no fds are ready

Asynchronous |/0O (disk)
program tells the OS to begin reading / writing

the “begin_read” or “begin_write” returns immediately

when the I/0O completes, OS delivers an event to the program

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Why the difference”

Non-blocking I/O is for networks
according to Linux, the disk never blocks your program
it just delays it
but, reading from the network can truly block your program
a remote computer may wait arbitrarily long before sending data
Asynchronous |/O is for files

primarily used to hide disk latency
asynchronous 1/0O system calls are messy and complicated :(

instead, typically use a threadpool to emulate asynchronous 1/0O

CSE333 lec 20 concurrency // 08-10-16 // Perkins

Whither events”?

Advantages
don’t have to worry about locks and “race conditions”

for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

one event handler for each Ul event

Disadvantages

can lead to very complex structure for programs that do lots of
disk and network /O

sequential code gets broken up into a jumble of small event handlers

you have to package up all task state between handlers

CSE333 lec 20 concurrency // 08-10-16 // Perkins

One way to think about it

Threaded code:

each thread executes its task sequentially, and per-task state
IS naturally stored in the thread’s stack

OS and thread scheduler switch between threads for you
Event-driven code:
*you™ are the scheduler

you have to bundle up task state into continuations; tasks do
not have their own stacks

CSE333 lec 20 concurrency // 08-10-16 // Perkins

See you on Friday!

CSE333 lec 20 concurrency // 08-10-16 // Perkins

