
CSE333 lec 18 networks.3 // 08-05-16 // Perkins

CSE 333
Lecture 18 -- server sockets

Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Administrivia
Exercise covering client-side programming posted late
yesterday, due Monday before class

Next exercise covers today’s server-side code. Posted
this morning in case people want to get started over the
weekend, but not due until Wednesday before class.

HW4 posted now, files pushed after class, due last
Wednesday of the quarter (+ late days if you have them)

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Today

Network programming
- server-side programming

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Servers
Pretty similar to clients, but with additional steps
- there are seven steps:

1. figure out the address and port on which to listen

2. create a socket

3. bind the socket to the address and port on which to listen

4. indicate that the socket is a listening socket

5. accept a connection from a client

6. read and write to that connection

7. close the connection

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.

Step 2. Create a socket.

Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Servers
Servers can have multiple IP addresses
- “multihomed”

- usually have at least one externally visible IP address, as well
as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:
- specify that it should listen on all addresses

‣ by specifying the address “INADDR_ANY” or “in6addr_any” --
0.0.0.0 or :: (i.e., all 0’s)

- specify that it should listen on a particular address

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

bind()
The “bind()” system call associates with a socket:
- an address family

‣ AF_INET: IPv4

‣ AF_INET6: IPv6 (also handles IPv4 clients on POSIX systems)

- a local IP address
‣ the special IP address INADDR_ANY (“0.0.0.0”) means “all local

IPv4 addresses of this host”

‣ use in6addr_any (instead of INADDR_ANY) for IPv6

- a local port number

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

listen()

The “listen()” system call tells the OS that the socket is a
listening socket to which clients can connect
- you also tell the OS how many pending connections it should

queue before it starts to refuse new connections
‣ you pick up a pending connection with “accept()”

- when listen returns, remote clients can start connecting to
your listening socket
‣ you need to “accept()” those connections to start using them

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Server socket, bind, listen

see server_bind_listen.cc

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Accepting a connection from a client

Step 5. accept() a connection from a client.

Step 6. read() and write() to the client.

Step 7. close() the connection.

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

accept()

The “accept()” system call waits for an incoming
connection, or pulls one off the pending queue
- it returns an active, ready-to-use socket file descriptor

connected to a client

- it returns address information about the peer
‣ use inet_ntop() to get the client’s printable IP address

‣ use getnameinfo() to do a reverse DNS lookup on the client

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Server accept, read/write, close

see server_accept_rw_close.cc

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Something to note...

Our server code is not concurrent
- single thread of execution

- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the
connection

A crowd of clients is, by nature, concurrent
- while our server is handling the next client, all other clients are

stuck waiting for it

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Before we go…

hw4 demo

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Exercise 1

Write a program that:
- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ does a DNS lookup on the name

‣ writes back to the client the list of IP addrsses associated with the
DNS name

‣ closes the connection to the client

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Exercise 2

Write a program that:
- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ connects to that DNS name on port 80

‣ writes a valid HTTP request for “/”

• see next slide for what to write

‣ reads the reply, returns the reply to the client

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

Exercise 2 continued
Here’s a valid HTTP request to server www.foo.com
- note that lines end with ‘\r\n’, not just ‘\n’

GET / HTTP/1.0\r\n
Host: www.foo.com\r\n
Connection: close\r\n
\r\n

CSE333 lec 18 networks.3 // 08-05-16 // Perkins

See you on Monday!

