
 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 1 of 11

Question 1. (20 points) A bit of C++ coding. As we know, a web page is formed from a
mix of tags like <title> or </p> that control formatting and layout, and plain text
content that is displayed as-is. One of your colleagues is working on a program to
discover how frequently different tags are used and has asked for your help in writing a
key function to do the counting. The input to this function is a C++ list<string>
that contains the individual words and tags from a set of web pages. The function is
required to allocate a new map<string,int> on the heap and store in it a collection
of (string,int) pairs, where each string is a tag and the corresponding int is how
often it appears in the input list. The function should return a pointer to the newly-
allocated map.

Example: Suppose the input list contains the following strings:

"<title>" "fun" "stuff" "</title>" "<p>" "this" "is"
"interesting" "</p>" "<p>" "and" "so" "is" "<this" "</p>"

Then the output map produced by the function for this input list should contain the
following (string, count) pairs in any order; the ordering is not specified:

 ("<title>", 1), ("</title>", 1), ("<p>", 2), ("</p>", 2)

You may assume that all strings in the input list have at least one character, and that
strings do not have extra leading or trailing whitespace that needs to be deleted.

Note: A tag is a string that begins with “<” and ends with “>”. All other strings should
be ignored by the function.

Note: The input words might be from a well-formed, properly nested web document, or
they might be complete nonsense. Your function should not attempt to analyze the input
beyond determining for each input string whether or not it is a tag and, if it is, count it.

Write your answer on the next page. You can remove this page if you wish.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 2 of 11

Question 1. (cont.) Write your implementation below. The function heading is given for
you, and you should assume that all necessary headers have already been #included.
Hint: you probably won’t need nearly all of this space.

// Return a new heap-allocated map that stores (string,int)
// pairs, where the strings are html tags (e.g., "<thing>")
// and each int is the number of times that string occurs
// in the input list of words. The list of words may contain
// other strings that are not tags and are not counted.

map<string, int> * tagmap(const list<string> & words) {

 map<string, int> * freq = new map<string, int>();

 for (auto w: words) {

 if (w[0] == '<' && w[w.length()-1] == '>') {

 (*freq)[w] += 1;

 }

 }

 return freq;

}

Notes: There are many possible ways to implement this function and correct
solutions received full credit. w.size() can be used instead of w.length() –
they do the same thing. It is possible to use auto for the type of the map variable.
We included the explicit type in the solution above to provide a few additional
details.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 3 of 11

Question 2. (12 points) Smart pointers. The new summer intern, A. Hacker, has decided
that C++ smart pointers are the solution to all memory management problems and has
been going through the company’s code repository replacing all pointers (things with
type T*) with C++ shared pointers (with type shared_ptr<T>).

One of the packages that Hacker has changed is one that uses a double-linked list. The
original code had nodes that were defined like this:

class IntNode {
 int val; // payload
 IntNode *next; // next/prev pointers
 IntNode *prev;
};

Hacker has replaced that definition with this one:

class IntNode {
 int val; // payload
 shared_ptr<IntNode> next; // next/prev ptrs
 shared_ptr<IntNode> prev;
};

(a) (6 points) One of the other programmers tells Hacker that this can’t work. Even
though it uses shared pointers everywhere, code that uses the new nodes will still have
memory leaks. Is the other programmer right? How is this possible? (Be brief)

Yes. If this node structure is used, every double-linked list with more than one node
will contain cycles with nodes whose reference counts will never decrease to 0, and
will never be automatically deleted by the shared_ptrs.

(b) (6 points) After listening to the objections, Hacker proposes replacing all of the
shared_ptr<IntNode> declarations with weak_ptr<IntNode>. With this
change, will memory management work properly with no leaks or other bugs? Be brief.

No, that won’t work. weak_ptrs do not have any interaction with the automatic
deletion done by shared_ptrs or unique_ptrs. These nodes will behave just
like nodes with regular pointers and will not be reclaimed unless they are deleted
explicitly.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 4 of 11

Question 3. (16 points) C++ classes. Consider the following program, which compiles
and links successfully. (What happens after that is something we’ll get to later. J)

#include <iostream>
using namespace std;

class Base {
public:
 Base() {
 cout << "Base constructor" << endl;
 ia_ = new int[5];
 }
 virtual ~Base() {
 cout << "Base destructor" << endl;
 delete[] ia_;
 }
 Base& operator=(const Base& rhs) {
 if (this != &rhs) {
 delete[] ia_;
 ia_ = rhs.ia_;
 cout << "Base assignment" << endl;
 }
 return *this;
 }
private:
 int *ia_;
};

class Derive : public Base {
public:
 Derive() {
 ja_ = new int[5];
 cout << "Derive constructor" << endl;
 }
 virtual ~Derive() {
 cout << "Derive destructor" << endl;
 delete[] ja_;
 }
private:
 int *ja_;
};

int main() {
 Base b1;
 Derive d1;
 b1 = d1;
 return 0;
}

(Question continued on next page – you may remove this page if you wish.)

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 5 of 11

Question 3. (cont.) (a) (8 points) What does this program print when it is executed?

(Reminder/hint: when an object of a derived class is constructed, the base class
constructor for that object executes before the derived class constructor. When the object
is deleted, the destructors run in the reverse order – derived class destructor first.)

Base constructor
Base constructor
Derive constructor
Base assignment
Derive destructor
Base destructor
Base destructor

(b) (8 points) Unfortunately, after the program finishes printing the output you described
in your answer to part (a), it crashes and does not exit normally. The memory
management software detects some sort of problem. What’s wrong and what is the error
in the code? (Be specific and concise. You do not need to fix the problem – just explain
it precisely.)

The memory manager reports a “double delete” error when the destructor for the
second object is executed. The error is in the Base::operator= code. This
assignment operator copies a pointer instead of creating a copy of the array. As a
result, after the assignment b1=d1, both objects point to the single ia_ array
originally allocated to d1, and the destructors for b1 and d1 both attempt to delete
it, causing the double delete error.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 6 of 11

Question 4. (20 points) The always entertaining virtual function question. The
following program compiles, runs, and produces output with no error messages or other
problems. Answer questions about it on the next page.

#include <iostream>
using namespace std;

class SuperThing {
public:
 virtual void m1() { m2(); cout << "super::m1" << endl; }
 void m2() { cout << "super::m2" << endl; }
 void m3() { cout << "super::m3" << endl; }
};
class Thing: public SuperThing {
public:
 virtual void m2() { m1(); cout << "thing::m2" << endl; }
};
class SubThing: public Thing {
public:
 virtual void m1() { cout << "sub::m1" << endl; }
 void m3() { m2(); cout << "sub::m3" << endl; }
};

int main() {
 SuperThing *super = new Thing();
 Thing *th = (Thing*)super;
 SubThing *sub = new SubThing();
 Thing *thsub = sub;

 ///// HERE /////

 cout << "---" << endl;
 th->m1();
 th->m3();
 cout << "---" << endl;
 sub->m1();
 sub->m3();
 cout << "---" << endl;
 thsub->m1();
 thsub->m3();

 return 0;
}

(Question continued on next page – you may remove this page if you wish.)

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 7 of 11

Question 4. (cont.) (a) (8 points) Complete the following diagram to show the runtime
state of the program when execution reaches the comment ///// HERE ///// in
function main. The diagram should include the variables in main (already supplied),
the objects they point to, pointers from objects to their vtables, and pointers from vtables
to the correct functions. To save time, boxes for the variables in main, the vtables, the
functions, and the first object created by the program, have been provided for you. A
couple of the arrows representing some of the pointers are also included to get you
started. You need to supply all additional objects and pointers needed (if any). Be sure
that the order of pointers in the various vtables is clear.

(b) (12 points) What does this program print when it is executed?

super::m2
super::m1
super::m3

sub::m1
sub::m1
thing::m2
sub::m3

sub::m1
super::m3

super&

th&

sub&

thsub&

SuperThing&vtbl&

Thing&vtbl&

SubThing&vtbl&

SuperThing::m1&

SuperThing::m2&

SuperThing::m3&

Thing::m2&

SubThing::m1&

SubThing::m3&

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 8 of 11

Question 5. (15 points) Concurrency. The arguments to the following program are a
string (argv[1]) and a list of one or more files (argv[2], argv[3], etc.). The
program does a parallel search to count the number of occurrences of the string in the
files. A separate worker thread is created to count each file and then update a global
total. Answer questions about this program following the end of the code on the next
page. Do not detach this page – you may want to write some answers on it.

#includes omitted – assume all necessary ones are provided

static char *search_word = NULL; // Word to look for
static int nfound = 0; // total number of occurrences of
 // search_word in all files
static pthread_mutex_t sum_lock; // added

// Return number of occurrences of search_word in file
// whose name is fname. Does exit(1) on failure.
int numOccurences(char *fname) {
 /* Implementation omitted */
}
// Thread "starter" function: search file whose name is given in
// arg and add number of occurrences of search_word to nfound.
void *thread_main(void *arg) {
 char *fname = (char *)arg;
 int count = numOccurences(fname);
 printf(" File: %s – number found: %d\n", fname, count);
 pthread_mutex_lock(&sum_lock); // added
 nfound += count;
 pthread_mutex_unlock(&sum_lock); // added
 return NULL;
}
// Search for string (argv[1]) in files (argv[2], ...) and print
// total number of occurrences of that string in those files.
int main(int argc, char** argv) {
 if (argc < 2) {
 fprintf(stderr, "usage: %s STRING [FILE...]\n", argv[0]);
 return EXIT_FAILURE;
 }
 search_word = argv[1];
 int num_threads = argc - 2;
 printf("Searching for: %s\n", search_word);
 pthread_t *thds = malloc(sizeof(pthread_t) * num_threads);
 pthread_mutex_init(&sum_lock, NULL); // added
 for (int i = 0; i < num_threads; i++) {
 if (pthread_create(&thds[i],NULL,&thread_main,argv[2+i])!=0){
 fprintf(stderr, "pthread_create failed\n");
 return EXIT_FAILURE;
 }
 } // function main continued on next page

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 9 of 11

Question 5. (cont.) Listing of main program, continued.

 for (int i = 0; i < num_threads; i++) {
 if (pthread_join(thds[i], NULL) != 0) {
 fprintf(stderr, "pthread_join failed\n");
 return EXIT_FAILURE;
 }
 }
 printf("Total number found: %d\n", nfound);
 pthread_mutex_destroy(&sum_lock); // added
 free(thds);
 return 0;
}
(a) (5 points) Are there any possible race conditions (possible synchronization errors) if
this program is used to search a single file for the string? Give a precise explanation of
why or why not.

No. Once main has created a second thread to search the file it waits for that
thread to exit before continuing. So there is no possibility of concurrent access to
any shared variables.

(b) (5 points) Are there any possible race conditions (possible synchronization errors) if
this program is used to search multiple files for the string? (i.e., more than one file name
is given in the program arguments) Give a precise explanation of why or why not.

Yes. All of the threads read global variable nfound, add something to the value
read, and store it back. If the read-modify-write steps in two different threads are
interleaved in the wrong order, one or more updates can be lost. (We are assuming
that numOccurrences is thread-safe and that no two program arguments contain
the same file name, which would introduce additional race conditions.)

(c) (5 points) If there are any race conditions (possible synchronization errors) in the
code, modify or add missing pieces to the code to make it thread-safe. You should write
your corrections on the code listing, showing what needs to be changed or inserted. You
can declare additional global or local variables as needed. If no changes are needed,
simply say so. Some possibly useful function prototypes:

• pthread_create(thread, attr, start_routine, arg)
• pthread_exit(status)
• pthread_join(thread, value_ptr)
• pthread_cancel (thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr) // attr=NULL

usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)

• pthread_mutex_destroy(pthread_mutex_t * mutex)
Additional code needed to create and use a lock added in the code on the previous
page. Look for the bold lines with the “//added” comments.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 10 of 11

Question 6. (10 points) In the hw3 project we wrote a complex file structure to disk
holding hash tables, indexes, and other information about collections of documents.

(a) (5 points) One of the very last things written to the file was a checksum field in the
file header. What was the purpose of this field (briefly)?

It helps us verify that the file has not been damaged. The checksum is computed as
a mathematical function of the contents of most of the file. If the checksum stored
in the header doesn’t match the value we get when we recalculate it when reading
the file, we know the file has been corrupted.

(b) (5 points). The header of the file also contained a “magic number” (in hex,
0xCAFEF00D) and we were very careful to write this at the very end, after everything
else had been written. Why? Why wait until the end instead of writing it earlier?

This is written last so that if our program crashes before we have finished writing
the file the magic number won’t be present. When a program reads the file, if the
magic number is missing we know the file is incomplete or damaged.

Question 7. (6 points) Our favorite summer intern, A. Hacker, has been messing around
in the network code and has decided that the TCP/IP networking software layers have too
much overhead. Since TCP chops messages up into small packets to be delivered by IP,
he proposes to eliminate TCP sockets from the code and simply send long messages as
multiple packets directly, thereby saving the cost of using TCP. Is this a reasonable
change? Would we be missing anything if we simply chopped the messages into packets
and sent them via IP? If so, what would be missing? (Keep it brief and describe the main
issue(s).)

Two main things that TCP does that would be missing if we sent packets directly:

• Check for lost packets and arrange to have them retransmitted.
• When packets are received out of order, arrange them in the correct order to

reassemble the original message properly.

Notes: Remember that IP does not guarantee that packets will be received in the
order they were transmitted, and packet delivery is on a “best efforts” basis, so
some packets may be lost in transmission.

In addition to correctness, TCP also manages flow control to match the speed at
which packets are sent to network capacity, and it also provides port numbers and
some other features. But these are secondary compared to providing reliable, in-
order transmission of the packets that comprise a message.

 CSE 333 Final Exam March 16, 2016 Sample Solution

 Page 11 of 11

Question 8. (1 free point) Which of the following best matches your opinion about
daylight savings time – the reason all the clocks moved forward one hour on Sunday
morning. (Circle)
(a) It’s great! There’s still sunlight when I emerge from the basement to go home.

(b) Really didn’t like having to get up an hour earlier for my 8:30 exam this Monday.
(c) Daylight? What is this “daylight” of which you speak?

(d) Love it. Means spring break can’t be too far behind.
(e) Stupid idea. Let’s leave all the clocks set to standard time.

(f) Everyone should use a sundial. Noon is when the sun is directly overhead.
(g) Stupid idea. All clocks should be set to GMT universal time so we don’t have to deal
with time zones.
(h) Time zones? Isn’t that something that went out with the end of passenger railroads?

(i) Meh. Might get used to it by late summer, and then they just change it back again.
(j) Good reminder that it’s time to get the yacht out of storage and go boating again.

(k) Don’t care. I’m going to catch up on sleep during spring break so it won’t matter
what it says on the clock.

(l) Great idea. I’d never remember to replace the smoke detector batteries without it.
(m) It’s great! But not the day before finals week!!

(x) I don’t have an opinion, but please give me my free point anyway.
(y) I do have an opinion, but I’m not going to tell. Please give me my free point anyway.

(z) None of the above, but I still want my free point. My real opinion about daylight
savings time is:

All answers received 1 point.

Have a great time over spring break!! See you next quarter!!!
The CSE 333 staff

