
 CSE 333 Midterm Exam 7/27/15

 Page 1 of 10

Name __

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we
tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 24

2. ______ / 12

3. ______ / 12

4. ______ / 12

5. ______ / 20

6. ______ / 20

 CSE 333 Midterm Exam 7/27/15

 Page 2 of 10

Question 1. (24 points) C programming. In this problem we want to implement a set of
strings in C. A set is represented as a linked list of strings with no duplicate values. The
nodes in the list are defined as follows:

typedef struct snode_t {
 char * str; // string on the heap owned by this node
 struct snode_t * next; // next node in in the set
} SNode;

An empty set is represented by an empty list (NULL). When a string is added to the set, a
copy of the string is made on the heap (allocated with malloc) so that the strings
referenced by the set are not shared with strings in client programs. The nodes are also
allocated on the heap. A diagram of a set containing strings “abc” and “xyz” would look
like this (although the strings could be stored in any order):

Your job is to implement functions contains and add for this data structure. Client
code uses these functions as follows:

 SNode * set = NULL; // set of strings, initially empty
 add(&set, "xyz"); // add “xyz” to the set
 printf("%d\n", contains(set, "abc")); // prints 0
 printf("%d\n", contains(set, "xyz")); // prints 1
 add(&set, "xyz"); // no change – “xyz” already in set
 add(&set, "abc"); // set now contains “abc” and “xyz”

Write implementations of functions contains and add on the next pages. You need to
fill in the parameter types as well as the bodies of the functions. The parameters types
should be chosen so that the above client code will compile and run properly. Your
implementation of add should use contains to decide if a string is already in the set
and should not change the set if the string is already included.

Some useful string functions, if you need them. All string arguments have type char*.

• strlen(s) returns the number of characters (bytes) in s, not including the
‘\0’ byte at the end.

• strcpy(dst,src) copies src to dst.
• strcat(dst,str) appends a copy of src to the end of dst.
• strcmp(x,y) returns 0 if strings x and y are the same, some negative integer if

x<y, and some positive integer if x>y.

 a b c \0 x y z \0

 CSE 333 Midterm Exam 7/27/15

 Page 3 of 10

Question 1. (cont.) Node type definition repeated for reference:

typedef struct snode_t {
 char * str; // string on the heap owned by this node
 struct snode_t * next; // next node in in the set
} SNode;

(a) (10 points) Implement function contains. Be sure to supply parameter types.

// return 1 if set st contains string s, otherwise return 0

int contains(_________________ st, ________________ s) {

}

(Continued on next page. You probably won’t need all this space.)

 CSE 333 Midterm Exam 7/27/15

 Page 4 of 10

Question 1. (cont.) Node type definition repeated for reference:

typedef struct snode_t {
 char * str; // string on the heap owned by this node
 struct snode_t * next; // next node in in the set
} SNode;

(b) (14 points) Implement function add. Be sure to supply parameter types.
Constraint: use contains to decide whether the string is already included in the set.

// Add string s to set st if it is not already a member.
// Return 1 if st was changed to add s, otherwise return 0.
// If s is added to st, a copy of s is allocated on the
// heap. If any storage allocation fails, leave the set
// unchanged and return 0.

int add(_________________ st, _________________ s) {

}

 CSE 333 Midterm Exam 7/27/15

 Page 5 of 10

Question 2. (12 points) Preprocessor. Consider the following C++ (not C) program,
which does compile and execute successfully.

#include <iostream>
using namespace std;

#define TEST

#ifdef TEST
#define CHECK(x) incr(x)
#else
#define CHECK(X)
#endif

void incr(int &n) {
 n++;
 cout << "incr: " << n << endl;
}

int main() {
 int x = 0;
 CHECK(x);
 x += 42;
 cout << "x = " << x << endl;
 CHECK(x);
 cout << "x = " << x << endl;
 return 0;
}

(a) (6 points) What does this program print when it is compiled and executed?

(b) (6 points) Now suppose we remove the single line #define TEST from the top of
the program, recompile it, and run it again. What does it print after this change?

 CSE 333 Midterm Exam 7/27/15

 Page 6 of 10

Question 3. (12 points) Making stuff. Here is the Makefile for a small application
similar to the one used as an example in class.

foobar: main.o foo.o bar.o

 gcc -Wall –g -std=c11 -o foobar main.o foo.o bar.o

main.o: main.c foo.h bar.h

 gcc -Wall -g -std=c11 -c main.c

foo.o: foo.c foo.h

 gcc -Wall -g -std=c11 -c foo.c

bar.o: bar.c bar.h foo.h

 gcc -Wall -g -std=c11 -c bar.c

clean:

 rm -rf foobar *.o *~

The summer intern working on this program has changed the code slightly, but doesn’t
understand how to update the Makefile appropriately. The changes to the code are:

1. Two new files have been added: dictionary.h and dictionary.c. These
declare and implement a new data structure used in the program.

2. Files foo.c and main.c have been changed to use this new data structure by
adding #include "dictionary.h" to each of these C files.

Alter the above Makefile to take these changes into account. The modified
Makefile should work as expected: the new data structure files should be compiled and
linked with the rest of the program, and files should be recompiled only when needed.
Write your changes directly on the Makefile above.

 CSE 333 Midterm Exam 7/27/15

 Page 7 of 10

Question 4. (12 points) Bugs ‘R Us. Each of the following C functions has a memory
management error. Briefly explain what could or will go wrong when the code is
executed.

(a) (6 points)

void f(int * p) {
 free(&p);
}

(b) (6 points)

int h(int, int*); // external helper function declaration

int * g(int sz) {
 int * ans = (int*)malloc(sz*sizeof(int));
 int ok = h(sz,ans);
 if(ok)
 return ans;
 else
 return g(sz*2); // recur with bigger size
}

 CSE 333 Midterm Exam 7/27/15

 Page 8 of 10

Question 5. (20 points) Pointy things. Consider the following program, which compiles
and executes with no warnings or errors:

#include <stdio.h>

void g(int **x, int *y, int *z) {
 **x = 10;
 *x = z;
 // HERE!!! (see below) //
 printf("g: %d %d %d\n", **x, *y, *z);
}

void f(int *q, int n, int *p) {
 n = n+2;
 *p = *p**q;
 g(&q, &n, p);
 printf("f: %d %d %d\n", *p, *q, n);
}

int main() {
 int a = 7;
 int b = 2;
 f(&a, b, &b);
 printf("main: %d %d\n", a, b);
 return 0;
}

(a) (14 points) Draw a boxes ‘n arrows diagram showing the memory layout and
contents at the point just before the printf in function g is executed (marked with
HERE!!! in the comment). Be sure your diagram clearly shows the values of all
variables in all active functions and has a separate box or stack frame for each function.
For each pointer, draw an arrow from the pointer to the variable that it references. Use
the space below the code and/or to the right for your diagram.

(b) (6 points) What does this program print when it is executed?

 CSE 333 Midterm Exam 7/27/15

 Page 9 of 10

Question 6. (20 points) A bit of C++ hacking. In class we demonstrated a simple string
class named Str. This class provides strings with operations like append, length, and
assignment. Regular heap-allocated C strings (\0-terminated array of characters) were
used in the implementation. Here is a subset of the class declaration in Str.h:

class Str {
 public:
 // constructors
 Str(); // create empty Str
 Str(const char *s); // create Str from c-string s
 ...
 private:
 // Str representation
 char *st_; // c-string on heap with '\0' terminator
};

And here is the implementation of those two constructors from Str.cc:

Str::Str() {
 st_ = new char[1];
 st_[0] = '\0';
}

Str::Str(const char *s) {
 int len = strlen(s);
 st_ = new char[len+1];
 strcpy(st_, s);
}

We would like to add a += operator to this class. This new operator should update a
string by appending a second string to it. For example, the sequence

 Str s("hello");
 Str t(" there");
 s += t;
 cout << s << endl;

should print “hello there”. The += operation is an assignment operation, so it should
have the proper type and result so that chained assignments like s+=t+=u work
properly.

Write your answers on the following page. Feel free to detach this page for reference
while you work.

 CSE 333 Midterm Exam 7/27/15

 Page 10 of 10

Question 6. (cont.) (a) (6 points) Give a correct declaration for the new Str +=
operator. This is the declaration that should be added to the Str class declaration in
Str.h.

(b) (14 points) Write an implementation of the += operator as it would appear in
Str.cc. You must implement this operation directly and not call other functions in
class Str. You will, of course, need to use functions from the C string library to process
the underlying string arrays, and you should use those.

