
 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 1 of 8

Question 1. (20 points) A bit of C++ coding. We’ve discovered an old C program that
keeps track of student grades. It has been partially converted from C to C++, but the data
is still held in a collection of structs. As in C, all of the fields of a C++ struct are
public by default, but a C++ struct defines a regular, new type, not just a struct tag.
The code uses some C++ types (string, vector). Otherwise this is still procedural
code, not classes with member functions. Here are the declarations:

struct Course { // information about one course
 string dept_; // department ("CSE", "Art", ...)
 int num_; // course number
 int credits_; // credit hours
 float grade_; // grade received (e.g., 4.0, 3.6, ...)
};

struct Transcript { // a student transcript
 string name_; // student name
 string major_; // student department
 vector<Course> all_courses_; // courses taken
};

For this problem, implement function GPAInDept on the next page. This function has
two arguments: a Transcript and a string giving a department name. The function
should return the grade point average (gpa) for all courses found in the transcript from
that department. The gpa is computed by selecting the courses whose department
matches the requested one, multiplying each grade by the credit hours for the course,
adding those results, then dividing by the total credit hours for all selected courses.

Example: suppose the transcript contains: CSE 143, 5 credits, grade 3.6; History 100,
3 credits, 2.8; CSE 333, 4 credits, 3.8; and Art 490, 3 credits, 4.0. The gpa for “CSE” is
(3.6*5 + 3.8*4) / 9 = 3.69.

Some brief reference information about the STL vector class, used in Transcript.

• If lst is a STL vector, then lst.begin() and lst.end() return iterator
values of type vector<...>::iterator that might be useful.

• If it is an iterator, then *it can be used to reference the item it currently points
to, and ++it will advance it to the next item, if any.

• Some useful operations on STL containers, including vector:
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false
o c.push_back(x) – copy x to end of c

• You are free to use the C++11 auto keyword, C++11-style for-loops for
iterating through containers, and any other features of standard C++11, but you
are not required to use these.

Write your code on the next page. You can remove this page for reference if you wish.

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 2 of 8

Question 1. (cont.) Write your implementation below. The function heading is given for
you, and you should assume that all necessary headers have already been #included.
Hint: you probably won’t need nearly all of this space.

// Return gpa for all courses in Transcript t where the
// course department matches the parameter dept.
// Return 0.0 if t contains no courses that match dept.

float GPAInDept(const Transcript &t, const string &dept) {
 int total_credits = 0;
 float total_points = 0.0;
 for (auto &course: t.all_courses_) {
 if (dept == course.dept_) {
 total_credits += course.credits_;
 total_points += course.credits_ * course.grade_;
 }
 }
 if (total_credits == 0)
 return 0.0;
 else
 return total_points / total_credits;
}

Second solution using explicit iterators to process the list of courses:

float GPAInDept(const Transcript &t, const string &dept) {
 int total_credits = 0;
 float total_points = 0.0;
 // for (auto course: t.all_courses_) {
 for (auto it = t.all_courses_.begin();
 it < t.all_courses_.end(); ++it) {
 if (dept == it->dept_) {
 total_credits += it->credits_;
 total_points += it->credits_ * it->grade_;
 }
 }
 if (total_credits == 0)
 return 0.0;
 else
 return total_points / total_credits;
}

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 3 of 8

Question 2. (16 points) Smart pointers. The following program creates a short linked
list. But it leaks memory because it never deletes any of the heap-allocated data.

Fix this program so it has no memory leaks. However, you may not alter what the
program does, you may not replace pointers to data with copies of the data, and you may
not insert any delete statements. Instead, you should fix the leaks by changing the code
to use smart pointers appropriately instead of regular pointers. Cross out existing code
and write new code as needed. Legibility is a big help – please write clearly.

Changes needed shown in bold below.

#include <iostream> // needed only for printing list
#include <memory> // smart pointers (for solution)
using namespace std;

struct Node {

 unique_ptr<int> val_; // ptr to node’s data on heap

 shared_ptr<Node> next_; // next node in list or nullptr if none

};

int main() {

 // create list

 shared_ptr<Node> list(new Node());

 list->val_ = unique_ptr<int>(new int(17));

 shared_ptr<Node> p(new Node());

 p->val_ = unique_ptr<int>(new int(42));

 p->next_ = nullptr;

 list->next_ = p;

 // print list

 for (auto n = list; n != nullptr; n = n->next_)

 cout << *(n->val_) << " ";

 cout << endl;

 return 0;

}

Notes: The payload (val_) pointer could have also been a shared_ptr, but since
each node has the only pointer to its data a unique_ptr is more efficient. Pointers
to the list nodes need to be shared_ptrs, however, to allow for assignments.

There are other ways to solve the problem and correct solutions received credit
provided they only modified the program to use smart pointers and did not change
it otherwise.

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 4 of 8

Question 3. (16 points) Not the inheritance question you were expecting. Give C++
code that could be put in place of the /* YOUR CODE HERE */ below such that the
program compiles without warning and prints out the 13 characters Hello, World!
followed by a newline (and nothing else) when run.

• You must provide one class definition and two method definitions (you can
declare more methods.)

• Sample solution is 8 lines (but, like the supplied code, some methods are defined
in one line). Your solution doesn’t need to have exactly the same number of lines.

#include <iostream>
using namespace std;

/* YOUR CODE HERE */

class D : public C {
public:
 void m1();
 void m2();
};
void D::m1() { cout << "summer "; }
void D::m2() { cout << ", World"; }

int main(int argc, char** argv) {
 C* c = new D();
 char x = 'F';
 c->m1();
 c->m2();
 c->m3(x);
 cout << x << endl;
 return 0;
}

Solution:

class C {
public:
 void m1();
 virtual void m2() = 0;
 void m3(char& a);
};
void C::m1() { cout << "Hello"; }
void C::m3(char& x) { x = '!'; }

Note: m2 must be a pure virtual (abstract) function in order to meet the problem
constraint of only two method definitions in the solution.

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 5 of 8

Question 4. (15 points) Memory mangling. Suppose we have the following struct to
define nodes of a linked list whose data consists of heap-allocated C strings:

struct node { // heap-allocated node
 char *s; // pointer to string on the heap
 struct node *next; // pointer to next node, or NULL if none
};

Here are three functions that attempt to free one of these linked lists. For each one, write
“WORKS” if the function works properly and frees all of the list and data, write “LEAK”
if the function leaks memory (fails to free something), or write “DANGLE” if the
function uses a dangling pointer (i.e., references memory using a pointer after that
memory is freed). If there is a problem, give a brief description of what’s wrong – you
don’t need to fix it. If there is more than one problem, identify all of them.

(a) (5 points)

void free_list_1(struct node *lst) {
 if (lst == NULL)
 return;
 free(lst);
}

(b) (5 points)

void free_list_2(struct node *lst) {
 if (lst == NULL)
 return;
 free(lst->s);
 free_list_2(lst->next);
 free(lst);
}

(c) (5 points)

void free_list_3(struct node *lst) {
 if (lst == NULL)
 return;
 free(lst);
 free(lst->s);
 free_list_3(lst->next);
}

LEAK: frees only the first node,
but none of the other nodes or
strings.

WORKS

DANGLE: references pointers in
the first node after that node has
been freed.

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 6 of 8

Question 5. (15 points) The list below describes several of the tasks that are performed
by various TCP/IP networking functions. For each task, indicate which TCP/IP functions
perform that task by writing the function name or names below the task description. A
list of the possible functions is given at the end of the question. Note that some tasks are
performed by more than one function, but all of them are performed by at least one
function. Be sure your answers are specific – list only the function or functions that
perform the immediate task described. Don’t list other functions that might have been
called previously, even if these would be needed before doing the particular task.

a) Allocate a new file descriptor entry in the table of active file descriptors for this
process.
 socket, accept

b) Open a TCP stream so that it can be used to transmit bytes to or receive bytes
from the stream.
 connect, accept

c) Exchange (send or receive) bytes between a client and a server in either direction.
 read, write

d) Translate a domain name like “attu.cs.washington.edu” to an IP address like
128.208.1.138.
 getaddrinfo

e) In a server program, indicate to the operating system that it should allow clients to
request service and that any requests received should be queued up until the
server is ready to handle them.
 listen

List of possible networking functions:

accept()
bind()
close()
connect()

inet_ntop()
inet_pton()
listen()
getaddrinfo()

getnameinfo()
read()
socket()
write()

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 7 of 8

Question 6. (16 points) Concurrency. Consider the following program (#includes
omitted to save space). The program calls function do_work many times to process
parts of some larger job. The exact work done doesn’t matter and isn’t specified further,
except that each call to do_work is completely independent of the rest of the code and
does not share any data with anything else. One of the interns has added threads to try to
take advantage of a multi-core system to get the total work done faster. There is a global
variable work_done that records the number of times do_work has been called so far.

const int NUM_THREADS = 4; // # worker threads
const int NUM_ITER = 10000; // # steps to be done by each worker

static int work_done = 0;
static pthread_mutex_t sum_lock;

// Do one chunk of work
void do_work() { ... details omitted ... }

void *thread_main(void *arg) {
 pthread_mutex_lock(&sum_lock);
 for (int i = 0; i < NUM_ITER; i++) {
 do_work();
 work_done++;
 }
 pthread_mutex_unlock(&sum_lock);
 return NULL;
}

int main(int argc, char** argv) {
 pthread_t thds[NUM_THREADS];
 pthread_mutex_init(&sum_lock, NULL);

 for (int i = 0; i < NUM_THREADS; i++) {
 if (pthread_create(&thds[i],NULL,&thread_main,NULL) != 0) {
 std::cerr << "pthread_create failed" << std::endl;
 exit(1);
 }
 }

 std::cout << "Total: " << work_done << std::endl;
 pthread_mutex_destroy(&sum_lock);
 return 0;
}

Answer questions about this code on the next page. You may remove this page from the
exam if that is convenient.

 CSE 333 Final Exam August 21, 2015 Sample Solution

 Page 8 of 8

Question 6. (cont.) (a) (6 points) When testing this code, it seems to run more slowly
than expected – not much faster than the original single-threaded version. What’s the
bug in the code that causes this particular problem and how should it be fixed?

The lock in thread_main is held too long. It should be acquired right before
incrementing work_done and released immediately after so other threads can
execute while do_work() is running.

(b) (5 points) The main function prints the value of variable work_done after it creates
all the threads. If we execute the original program with no changes, which of the
following values could be printed by that output statement? Circle all of the ones that are
possible. Note that there might be additional values that could be printed that are not
listed. Just indicate from the ones given here which ones could appear.

0

1

1571

8586

10000

11110

20000

25305

30000

36157

40000

42000

(c) (5 points) If the program can print any value other than 40000 (i.e., number of threads
times number of iterations per thread), what is the bug that allows this to happen, and
how should it be fixed? If the program always produces the right answer and there is
nothing to be fixed, say so. If a fix is needed, your solution should still allow concurrent
execution of the threads (i.e., “remove concurrency” is not the right answer). You do not
need to provide detailed code; just give a specific explanation of what needs to be done.

The main program prints work_done and terminates immediately after calling
pthread_create to create the four threads. Depending on how the threads are
scheduled, all of the new threads might run to completion before main exits, or the
process could terminate immediately before any of the threads have done any work
at all.

The fix is for the main thread to call pthread_join or some other appropriate
function(s) to wait for the four workers to finish before printing the final value of
work_done and then terminating the program.

Question 7. (2(!) free points) We should have had a clever or funny (or at least mildly
amusing) question here, but couldn’t come up with anything. What should it have been?

All answers received both points.

