
 CSE 333 Midterm Exam 5/10/13

 Page 1 of 8

Name __

There are 5 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can.

We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we

tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 18

2. ______ / 20

3. ______ / 22

4. ______ / 22

5. ______ / 18

 CSE 333 Midterm Exam 5/10/13

 Page 2 of 8

Question 1. (18 points) Consider these two C files:

a.c

void f(int p);

int main() {

 f(17);

 return 0;

}

b.c

void f(char *p) {

 *p = 'x';

}

(a) Why is the program made from a.c and b.c incorrect? What would you expect to

happen if it is executed?

(b) Will gcc -Wall -c a.c and gcc -Wall -c b.c give an error or will they

successfully produce a.o and b.o without complaint?

(c) Will gcc -Wall a.c b.c give an error or will it successfully produce a.out

without complaint?

(d) How would you use standard C coding practices (using an extra file) to avoid the

problems with this program (or at least detect them properly)? Give the contents of that

extra file below and explain what modifications should be made to a.c and/or b.c, if any.

 CSE 333 Midterm Exam 5/10/13

 Page 3 of 8

Question 2. (20 points) Consider the following rather twisted C program, which does

compile and execute with no warnings or errors:

#include <stdio.h>

int *conundrum(int *a, int b, int **c) {

 **c = b + *a;

 *c = a;

 **c = *a * b;

 // HERE

 return a;

}

int main() {

 int p = 2, q = 3, r = 7;

 int *d = &r;

 d = conundrum(&p, q, &d);

 printf("%d %d %d %d\n", p, q, r, *d);

 return 0;

}

(a) Draw a boxes ‘n arrows diagram showing state of memory when control reaches the

comment containing HERE, right before executing the return statement in function

conundrum. Your diagram should have two boxes showing the stack frames for

functions main and conundrum. The stack frames should include values of integer

variables and an arrow from each pointer to the location that it references. Then answer

part (b) at the bottom of the page.

(b) What output does this program produce when it is executed?

 CSE 333 Midterm Exam 5/10/13

 Page 4 of 8

Question 3. (22 points) The nodes in a linked list of C strings can be defined as follows:

typedef struct snode {

 char * str; // this node’s heap-allocated string

 struct snode * next; // next node in the list or NULL

} Snode;

Complete the definition of function Clone below so that it returns (a pointer to) an exact

duplicate of the list that is its argument, including duplicates of all the nodes and strings

in the original list. You may use strcpy instead of strncpy, and may assume that all

strings in the original list are properly \0-terminated. You may assume that malloc

will always successfully allocate data when it is called. Also assume that all necessary

library header files have already been #included. Hint: strcpy(dst,src) copies

the string src to the string dst.

// return a clone of the linked list with first node lst

// (which may be NULL)

Snode * Clone(Snode * lst) {

}

(additional room on the next page if needed)

 CSE 333 Midterm Exam 5/10/13

 Page 5 of 8

Question 3. (cont.) Additional room for your answer if you need it.

 CSE 333 Midterm Exam 5/10/13

 Page 6 of 8

Question 4. (22 points) For this problem consider the C++ class Vec on the next page.

This class is supposed to implement a simple vector of integers. All of the code is written

in the class declaration instead of in separate .h and .cc files to get it to fit on one page

for the exam.

The class has a constructor, copy constructor, assignment, methods to set and get

individual elements from the vector, and a destructor. The assignment and copy

constructor operations are supposed to make a complete copy (clone) of their argument.

The class compiles without any errors or warnings, but when it is used in a program it

generally segfaults, and, even if it doesn’t crash, valgrind reports all sorts of memory

management problems.

Mark the code on the following page to identify the problems, and write in corrections so

the class will work as intended. Keep your notes brief and to the point.

You should ignore possible problems with invalid index values or length arguments – i.e.,

assume the length provided to the constructor is positive and that the index arguments to

get and set are within bounds (i.e., 0 <= index < len_). You can also assume

that heap allocation (new) always succeeds. (There are enough other problems in the

code without worrying about these possibilities.)

You can use the space below if you need extra room to write explanations or corrections,

but please help the graders by making it easy to read your changes and figure out where

they fit.

 CSE 333 Midterm Exam 5/10/13

 Page 7 of 8

Question 4. (cont.) Find the bugs in the C++ code below, give a very brief description of

the problems, and correct the code so it works properly.

class Vec { // a vector of integers

 public:

 // initialize new Vec with n elements all set to 0. Assume n>0.

 Vec(int n) {

 v_ = new int[n];

 len_ = n;

 for (int i=0; i<len_; i++) v_[i] = 0;

 }

 // copy constructor - initialize *this to be a clone of other

 Vec(const Vec &other) {

 v_ = other.v_;

 len_ = other.len_;

 }

 // destructor – free resources

 ~Vec() { delete v_; }

 // replace the contents of *this with a clone of rhs

 Vec &operator=(const Vec &rhs) {

 delete v_;

 v_ = rhs.v_;

 len_ = rhs.len_;

 return *this;

 }

 // get/set functions. Assume that 0<=index<len_ (i.e., for this

 // question don't worry about index out of bounds problems)

 int get(int index) const { return v_[index]; }

 void set(int index, int n) { v_[index] = n; }

 private:

 int* v_; // array of int values allocated on the heap

 int len_; // number of ints in v_

};

 CSE 333 Midterm Exam 5/10/13

 Page 8 of 8

Question 5. (18 points) A few short questions to wrap up. For each question circle the

correct choice. You do not need to justify your answers.

(a) If a is declared as char a[5], then a[3]==*(a+3) is always true. (circle)

 True False

(b) If a is declared as int32_t a[5], then a[3]==*(a+12) is always true. (Recall

that a int32_t value occupies 4 bytes.) (circle)

 True False

(c) If we execute program xyzzy using the command line ./xyzzy one two, then

the value of argv[0] in the main program will be the string one. (circle)

 True False

(d) If on our Linux system a program contains a pointer variable declared as int *p

and in the debugger we see that the value of p is 0x7fffffffe318, we can conclude

that: (circle the best choice)

 (i) p refers to a variable allocated on the heap

 (ii) p refers to a local variable in some function’s stack frame

 (iii) p refers to constant data or to a location in the program’s x86 machine code

 (iv) p is NULL

 (v) we cannot conclude anything about the data referenced by p

(e) The system-level read function normally returns the number of bytes read. If it

returns the value -1 (error), then the program should not attempt any further I/O

operations on that stream because it would be a fatal error to do so. (circle)

 True False

(f) The stat system function returns information about a file. That information includes

a field st_mode that, among other things, describes the type of the file. All of these

files are classified as “regular files” as opposed to some other type: ascii text, Word .docx

files, jpeg picture files, compiler produced .o files, and executable files like a.out.

(circle)

 True False

