
CSE333 lec1 intro // 03-28-16 // perkins

CSE 333
Lecture 1 - Intro, C refresher
Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lec1 intro // 03-28-16 // perkins

Welcome!

Today’s goals:
- introductions

- course syllabus

- quick C refresher

CSE333 lec1 intro // 03-28-16 // perkins

Introductions
Us (cse333-staff@cs - please use this list, not individual staff email)
- Hal Perkins (Instructor)

- Phillip Dang (TA)

- Josh Nazarian (TA)

- Sixto (Joshua) Rios (TA)

- Soumya Vasisht (TA)

- Qingda (Bruce) Wen (TA)

- Zhitao (Reid) Zhang (TA)

Most important: You!!
- Anyone still trying to register or add the class? Secret overload info needed.

CSE333 lec1 intro // 03-28-16 // perkins

Welcome!

Today’s goals:
- introductions

- course syllabus

- quick C refresher

CSE333 lec1 intro // 03-28-16 // perkins

Course map: 100,000 foot view

hardware

operating system
HW/SW interface
(x86 + devices)

CPU memory storage network
GPU clock audio radio peripherals

OS / app interface
(system calls)

C standard library
(glibc)

C application

C++ STL / boost /
standard library

C++ application

JRE

Java
application

CSE333 lec1 intro // 03-28-16 // perkins

Systems programming

The programming skills, engineering discipline, and
knowledge you need to build a system
- programming: C / C++

- discipline: testing, debugging, performance analysis

- knowledge: long list of interesting topics
‣ concurrency, OS interfaces and semantics, techniques for

consistent data management, distributed systems algorithms, ...

‣ most important: a deep understanding of the “layer below”

• quiz: is data safely on disk after a “write()” system call returns?

CSE333 lec1 intro // 03-28-16 // perkins

Discipline?!?
Cultivate good habits, encourage clean code
- coding style conventions

- unit testing, code coverage testing, regression testing

- documentation (code comments, design docs)

- code reviews

Will take you a lifetime to learn
- but oh-so-important, especially for systems code

‣ avoid write-once, read-never code

CSE333 lec1 intro // 03-28-16 // perkins

What you will be doing
Attending lectures and sections
- lecture: ~28 of them, MWF here

- sections: 10 of them, Thur., see time schedule - rooms might change

- Take notes!!!! Don’t expect everything to be on the web

Doing programming projects
- 4 of them, successively building on each other, plus a warmup

- includes C, C++, file system, network

Doing programming exercises
- one per lecture, due before the next lecture begins

- coarse-grained grading (0,1,2,3)

Midterm and a final exam

CSE333 lec1 intro // 03-28-16 // perkins

Deadlines & Conduct
Need to get things done on time (very hard to catch up)
- Programming assignments: 4 late days, 2 max per project

‣ Intended for unusual circumstances, not routine procrastination

- Exercises: no late days (max benefit that way)

Academic Integrity (details on the web; read them)
- I trust you implicitly; I will follow up if that trust is violated

- The rules boil down to: don’t attempt to gain credit for something
you didn’t do; don’t help others to do so

- That does not mean suffer in silence - you have colleagues,
instructor, TAs - work with them; learn from each other!

CSE333 lec1 intro // 03-28-16 // perkins

Course web/calendar
Linked off of the course web page
- master schedule for the class (still needs midterm date)

- links to:
‣ lecture slides

‣ code discussed in lectures

‣ assignments, exercises (including due dates)

‣ optional “self-exercise” solutions

‣ various C/C++/Linux/git/CSE resources

Explore!!!

CSE333 lec1 intro // 03-28-16 // perkins

Labs, office hours, &c

Office hours: plan is to have something Mon.-Fri.
- Past quarters: late afternoons have worked

- Same this quarter? need a doodle poll to pick? other ideas?

Discussion board: stay in touch outside of class
- See main web page for link, post followup to welcome msg

Mailing list for announcements
- You are automatically subscribed when you are registered

CSE333 lec1 intro // 03-28-16 // perkins

Welcome!

Today’s goals:
- introductions

- course syllabus

- quick C refresher

CSE333 lec1 intro // 03-28-16 // perkins

C
Created in 1972 by Dennis Ritchie
- designed for creating system software

- portable across machine architectures

- most recently updated in 1999 (C99) and 2011 (C11)

Characteristics
- low-level, smaller standard library than Java

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

CSE333 lec1 intro // 03-28-16 // perkins

C workflow

Editor
(emacs, vi)

or IDE
(eclipse)

foo.c

source
files

(.c, .h)

foo.h

bar.c

edit
bar

link

link

executable

execute,
debug,
profile,

...

libZ.a

statically linked
libraries

libc.s

shared
libraries

load
bar

process

linkbar.o

object
files
(.o)

compile
foo.o

CSE333 lec1 intro // 03-28-16 // perkins

From C to machine code
int dosum(int i, int j) {
 return i+j;
}

C source file
(dosum.c)

C compiler (gcc -S)

dosum:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
popl %ebp
ret

assembly source file
(dosum.s)

assembler (as)

80483b0: 55
89 e5 8b 45
0c 03 45 08

5d c3

machine code
(dosum.o)

CSE333 lec1 intro // 03-28-16 // perkins

Skipping assembly language
Most C compilers generate .o files (machine code) directly
- i.e., without actually saving the readable .s assembly file

dosum.c gcc -S dosum.s as dosum.o

gcc -c

CSE333 lec1 intro // 03-28-16 // perkins

Multi-file C programs

int dosum(int i, int j) {
 return i+j;
}

C source file
(dosum.c)

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {
 printf("%d\n", dosum(1,2));
 return 0;
}

C source file
(sumnum.c)

dosum() is
implemented
in dosum.c

this “prototype” of
dosum() tells gcc
about the types of

dosum’s arguments
and its return value

CSE333 lec1 intro // 03-28-16 // perkins

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {
 printf("%d\n", dosum(1,2));
 return 0;
}

C source file
(sumnum.c)

Multi-file C programs

where is the
implementation

of printf?

why do we need
this #include?

int dosum(int i, int j) {
 return i+j;
}

C source file
(dosum.c)

CSE333 lec1 intro // 03-28-16 // perkins

Compiling multi-file programs
Multiple object files are linked to produce an executable
- standard libraries (libc, crt1, ...) are usually also linked in

- a library is just a pre-assembled collection of .o files

dosum.c dosum.ogcc -c

sumnum.c sumnum.ogcc -c

ld
(or gcc) sumnum

libraries
(e.g., libc)

CSE333 lec1 intro // 03-28-16 // perkins

Object files
sumnum.o, dosum.o are object files
- each contains machine code produced by the compiler

- each might contain references to external symbols
‣ variables and functions not defined in the associated .c file

‣ e.g., sumnum.o contains code that relies on printf() and dosum(),
but these are defined in libc.a and dosum.o, respectively

- linking resolves these external symbols while smooshing
together object files and libraries

CSE333 lec1 intro // 03-28-16 // perkins

Let’s dive into C itself
Things that are the same as Java
- syntax for statements, control structures, function calls

- types: int, double, char, long, float

- type-casting syntax: float x = (float) 5 / 3;

- expressions, operators, precedence
+ - * / % ++ -- = += -= *= /= %= < <= == != > >= && || !

- scope (local scope is within a set of { } braces)

- comments: /* comment */ 	 // comment

CSE333 lec1 intro // 03-28-16 // perkins

Primitive types in C
integer types
- char, int

floating point
- float, double

modifiers
- short [int]

- long [int, double]

- signed [char, int]

- unsigned [char, int]

type bytes
(32 bit)

bytes
(64 bit) 32 bit range printf

char 1 1 [0, 255] %c

short int 2 2 [-32768,32767] %hd

unsigned short int 2 2 [0, 65535] %hu

int 4 4 [-214748648,
2147483647] %d

unsigned int 4 4 [0, 4294967295] %u

long int 4 8 [-2147483648,
2147483647] %ld

long long int 8 8 [-9223372036854775808,
9223372036854775807] %lld

float 4 4 approx [10-38, 1038] %f

double 8 8 approx [10-308, 10308] %lf

long double 12 16 approx [10-4932, 104932] %Lf

pointer 4 8 [0, 4294967295] %p

typical sizes – see sizeofs.c

CSE333 lec1 intro // 03-28-16 // perkins

C99 extended integer types
Solves the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {
 int8_t w; // exactly 8 bits, signed
 int16_t x; // exactly 16 bits, signed
 int32_t y; // exactly 32 bits, signed
 int64_t z; // exactly 64 bits, signed

 uint8_t a; // exactly 8 bits, unsigned
 ...etc.
}

CSE333 lec1 intro // 03-28-16 // perkins

Similar to Java...
- variables

‣ C99/C11: don’t have to declare at start of a function or block

‣ need not be initialized before use (gcc -Wall will warn)

#include <stdio.h>

int main(int argc, char **argv) {
 int x, y = 5; // note x is uninitialized!
 long z = x+y;

 printf("z is '%ld'\n", z); // what’s printed?
 {
 int y = 10;
 printf("y is '%d'\n", y);
 }
 int w = 20; // ok in c99
 printf("y is '%d', w is '%d'\n", y, w);
 return 0;
}

varscope.c

CSE333 lec1 intro // 03-28-16 // perkins

Similar to Java...
const
- a qualifier that indicates the variable’s value cannot change

- compiler will issue an error if you try to violate this

- why is this qualifier useful?

#include <stdio.h>

int main(int argc, char **argv) {
 const double MAX_GPA = 4.0;

 printf("MAX_GPA: %g\n", MAX_GPA);
 MAX_GPA = 5.0; // illegal!
 return 0;
}

consty.c

CSE333 lec1 intro // 03-28-16 // perkins

Similar to Java...
for loops
- C99/C11: can declare variables in the loop header

if/else, while, and do/while loops
- C99/C11: bool type supported, with #include <stdbool.h>

- any type can be used; 0 means false, everything else true

 int i;

 for (i = 0; i < 100; i++) {
 if (i % 10 == 0) {
 printf("i: %d\n", i);
 }
 }

loopy.c

CSE333 lec1 intro // 03-28-16 // perkins

Similar to Java...
parameters / return value
- C always passes

arguments by value

- “pointers”
‣ lets you pass by reference

‣ more on these soon

‣ least intuitive part of C

‣ very dangerous part of C

void add_pbv(int c) {
 c += 10;
 printf("pbv c: %d\n", c);
}

void add_pbr(int *c) {
 *c += 10;
 printf("pbr *c: %d\n", *c);
}

int main(int argc, char **argv) {
 int x = 1;

 printf("x: %d\n", x);

 add_pbv(x);
 printf("x: %d\n", x);

 add_pbr(&x);
 printf("x: %d\n", x);

 return 0;
}

pointy.c

CSE333 lec1 intro // 03-28-16 // perkins

Very different than Java
arrays
- just a bare, contiguous block of memory of the correct size

- an array of 10 ints requires 10 x 4 bytes = 40 bytes of memory

arrays have no methods, do not know their own length
- C doesn’t stop you from overstepping the end of an array!!

- many, many security bugs come from this

CSE333 lec1 intro // 03-28-16 // perkins

Very different than Java
strings
- array of char

- terminated by the NULL character ‘\0’

- are not objects, have no methods; string.h has helpful utilities

h e l l o \n \0

 char *x = ”hello\n”;

x

CSE333 lec1 intro // 03-28-16 // perkins

Very different than Java
errors and exceptions
- C has no exceptions (no try / catch)

- errors are returned as integer error codes from functions

- makes error handling ugly and inelegant

crashes
- if you do something bad, you’ll end up spraying bytes around

memory, hopefully causing a “segmentation fault” and crash

objects
- there aren’t any; struct is closest feature (set of fields)

CSE333 lec1 intro // 03-28-16 // perkins

Very different than Java
memory management
- you must worry about this; there is no garbage collector

- local variables are allocated off of the stack
‣ freed when you return from the function

- global and static variables are allocated in a data segment
‣ are freed when your program exits

- you can allocate memory in the heap segment using malloc()
‣ you must free malloc’ed memory with free()

‣ failing to free is a leak, double-freeing is an error (hopefully crash)

CSE333 lec1 intro // 03-28-16 // perkins

Very different than Java
Libraries you can count on
- C has very few compared to most other languages

- no built-in trees, hash tables, linked lists, sort , etc.

- you have to write many things on your own
‣ particularly data structures

‣ error prone, tedious, hard to build efficiently and portably

- this is one of the main reasons C is a much less productive
language than Java, C++, python, or others

CSE333 lec1 intro // 03-28-16 // perkins

For Wednesday

Exercise 0 is due before class:
- http://www.cs.washington.edu/education/courses/cse333/16sp/exercises/ex00.html

- (Easier: look on the calendar or homework page for the link)

Post a message on the discussion board
- Get it to keep track of new messages for you!

HW0 out soon - will announce when ready
- Mostly logistics (get files via git, change files, turn in files via

git); demos/discussion during sections this week

CSE333 lec1 intro // 03-28-16 // perkins

See you on Wednesday!

