
CSE 333 – SECTION 7
C++ practice

Mix C and C++ (HW4)

• Including C Headers in C++ Code

• Inform the C++ compiler that some methods you'll be

calling are C methods

extern "C" {

#include “Array2d.h"

}

Mix C and C++ (HW4)

• You can't get GTK+ to invoke a method on an object

• Basic Approach: provide an adapter function (See hw4

spec)

https://en.wikipedia.org/wiki/Adapter_pattern

Mix C and C++ (HW4)

• Another good idea for you to think about:

• Write a wrapper class for your C code, e.g. Array2d.c

becomes a Array2d class

C++

• Object-oriented

• A major addition of C++ is its support for classes & objects

C++ classes

• Encapsulation and Abstraction

• encapsulation: hiding implementation details

• abstraction: associating behavior with encapsulated state (invoking

a method on an instance)

• Access specifiers:

• Public: anything outside the class can access it

• Protected: only this class and derived classes can access it

• Private: only this class can access it

Polymorphism

• static polymorphism:

• Multiple functions or methods with the same name, but different

argument types (overloading)

• Works for all functions, not just class members

• dynamic polymorphism:

• Derived classes can override methods of parents

Operator Overloading

• A form of polymorphism.

• Give special meanings to operators in user-defined

classes

• Special member functions in classes with a particular

naming convention

• For E.g., for overloading the ‘=’ operator, define a member

function named operator=

Common operators

• The most commonly overloaded operators are

• = (assignment operator)

• + - * (binary arithmetic operators)

• += -= *= (compound assignment operators)

• == != (comparison operators)

Example: Class Point

Point.h

#ifndef _POINT_H_

#define _POINT_H_

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const Point &p) const; // member function

void SetLocation(const int x, const int y); // member functn

private:

int x_; // data member

int y_; // data member

}; // class Point

#endif // _POINT_H_

Defined in the class,

so inline by default

Point.cc
#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

x_ = x;

this->y_ = y; // “this->” is optional, unless names conflict

}

double Point::Distance(const Point &p) const {

// We can access p’s x_ and y_ variables either through the

// get_x(), get_y() accessor functions, or the x_, y_ private

// member variables directly, since we’re in a member

// function of the same class.

double distance = (x_ - p.get_x()) * (x_ - p.get_x());

distance += (y_ - p.y_) * (y_ - p.y_);

return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

x_ = x;

y_ = y;

}

Overloading Operator =

Point &Point::operator=(const Point &pt) {

if (this != &pt) {

x_ = pt.x_;

y_ = pt.y_;

}

return *this;

}

Sec7 exercise

• Write a C++ program that:

• has a class representing a rectangle

• Use Point class to store the coordinates of the top-left corner

• Has width, height

• has the following methods:
• return the area of a rectangle

• test if a point is inside a rectangle

• overload “=”,

