CSE 333 - SECTION 5

C++ and Midterm Review

Overview

- C++ Classes, Constructors, new, delete, etc.
- Drawing Memory Diagrams
- Midterm Topic List

C++ classes

- Encapsulation and Abstraction

- Access specifiers:
- Public: anything outside the class can access it

- Protected: only this class and derived classes can access it
- Private: only this class can access it

- Polymorphism
- Multiple Inheritance

new and delete

- new is used to allocate objects and primitive data types on
the heap

- delete is used to deallocate these heap allocated objects
- Use “delete [] array” on an array
- Unlike malloc() and free(), new and delete are operators

Initialization vs Assignment

#define MAXSIZE 3

class IntArrayList ({
public:

IntArrayList() array (new int[MAXSIZE]), len_ (0), maxsize (MAXSIZE) { }

IntArrayList(const int *const arr, size_ t len) len (len), maxsize (len_*2) ({
array = new int[maxsize];
memcopy (array , arr, len * sizeof(int));

}

IntArraylist (const IntArraylList &rhs) ({

len = rhs.len_;
maxsize_ = rhs.maxsize ;
array = new int[maxsize];

memcopy (array , rhs.array , maxsize_ * sizeof (int));

}

private:
int *array ;
size_t len_;
size_t maxsize ;

};

Memory diagram

Memory diagram

class Wrap { int main() {
. Wrap a;
public: Wrap b (new IntArrayList);
Wrap () : p_(nullptr) { } gstruct List c { };
Wrap (IntArrayList *p) struct List d {*b.p()};
p (p) { *p = *p; } a = by
IntArrayList *p() const & ~ &
Wrap *e;
{return p ;} e = sa;
private: Wrap *f = new Wrap (&d.v);
IntArrayList *p ; struct List *g =
} new struct List;
g->v = * (new IntArraylist);
delete £f;
struct List delete g;

IntArrayList v; return 0;

Operator Overloading

- A form of polymorphism.

- Give special meanings to operators in user-defined
classes

- Special member functions in classes with a particular
naming convention

- For E.g., for overloading the '+’ operator, define a member
function named operator+

Common operators

- The most commonly overloaded operators are
- = (assignment operator)
- + - * (binary arithmetic operators)
- +=-=*= (compound assignment operators)
- == |= (comparison operators)

Midterm topic list

General program organization and where C fits in the
ecosystem

System layers: C language, libraries, and operating system
General workflow needed to build a program — preprocessor,
compile, link
Preprocessor — how #include, #define, #ifndef and other basic
commands rewrite the program
Structure of C/C++ programs: header files, source files
Declarations vs definitions
Organization and use of header files, including #ifndef guards
Faking modularity in C — headers, implementations
Internal vs external linkage; use of static for internal linkage

Dependencies — what needs to be recompiled when something
changes (dependency graph behind make and similar tools)

Make and makefile basics — how build dependencies are encoded in
makefile rules

Topic List (Contd.)

C language and program execution

Review: standard types, operators, functions, scope, parameters, strings,
etc.

Extended integer types (int32_t, uint64 t)

Sttandard /O library and streams: stdin, stdout, fopen, fread, scanf, printf,
etc.

POSIX libraries — wrappers for system calls
POSIX-layer I/O: open, read, write, etc.

Relationship between C standard library, POSIX library functions, and system calls
Error handling - error codes and errno
Process address space and memory map (code, static data, heap, stack)
Object lifetimes: static, automatic, dynamic (heap)
Stack and function calls — what happens during function call, return
Function parameters
Call by value semantics (including structs, pointers)
Arrays as parameters - pointers
Using pointers for call-by-reference semantics
Function pointers as parameters

Topic List (Contd.)

Pointers, pointers, pointers - &, *, and all that
Typing rules and pointer arithmetic (what does p+1 mean?)
Relationship between pointers and arrays, a[i] and pointer arithmetic
String constants, arrays of characters, C string library
Using void* as a “generic” pointer type
Casting
Dynamic allocation (malloc, free)

Potential bugs — memory leaks, dangling pointers (including returning
pointers to local data), etc.

Be able to draw and read diagrams showing storage and pointers, and
be able to trace code that manipulates these things.

Structs — how to define and use, meaning of p->x (= (*p).x)
Typedef — how to define and use
Linked data structures in C — linked lists, hash tables, etc.

Topic List (Contd.)

C++

Classes and modularity, namespaces

Be able to read simple class definitions and add to them,
implement functions, trace code, etc.

Know the difference between constructors, copy constructors, and
assignment and when these are called

Know what a destructor is and when it gets called

Other basic differences from C
Simpler, type-safe stream |/O (cout, cin, << and >>)

Type-safe memory management (new, delete, deletel[])
References — particularly reference parameters

More pervasive use of const (const data and parameters, const
member functions)

