
CSE 333 – SECTION 5
C++ and Midterm Review

Overview
• C++ Classes, Constructors, new, delete, etc.
• Drawing Memory Diagrams
• Midterm Topic List

C++ classes
• Encapsulation and Abstraction
• Access specifiers:

•  Public: anything outside the class can access it
•  Protected: only this class and derived classes can access it
•  Private: only this class can access it

• Polymorphism
• Multiple Inheritance

new and delete
•  new is used to allocate objects and primitive data types on

the heap
•  delete is used to deallocate these heap allocated objects
• Use “delete [] array” on an array
• Unlike malloc() and free(), new and delete are operators

Initialization vs Assignment
#define MAXSIZE 3

class IntArrayList {
public:
 IntArrayList() : array_(new int[MAXSIZE]), len_(0), maxsize_(MAXSIZE) { }

 IntArrayList(const int *const arr, size_t len) : len_(len), maxsize_(len_*2) {
 array_ = new int[maxsize_];
 memcopy(array_, arr, len * sizeof(int));
 }

 IntArrayList(const IntArrayList &rhs) {
 len_ = rhs.len_;
 maxsize_ = rhs.maxsize_;
 array_ = new int[maxsize_];
 memcopy(array_, rhs.array_, maxsize_ * sizeof(int));
 }
 ...
private:
 int *array_;
 size_t len_;
 size_t maxsize_;
};

Memory diagram

Memory diagram
class Wrap {
public:
 Wrap() : p_(nullptr) { }
 Wrap(IntArrayList *p)
 : p_(p) { *p_ = *p; }
 IntArrayList *p() const
 {return p_;}
private:
 IntArrayList *p_;
}

struct List {
 IntArrayList v;
}

int main() {
 Wrap a;
 Wrap b(new IntArrayList);
 struct List c { };
 struct List d {*b.p()};
 a = b;
 c = d;
 Wrap *e;
 e = &a;
 Wrap *f = new Wrap(&d.v);
 struct List *g =
 new struct List;
 g->v = *(new IntArrayList);
 delete f;
 delete g;
 return 0;
}

Operator Overloading
• A form of polymorphism.
• Give special meanings to operators in user-defined

classes
• Special member functions in classes with a particular

naming convention
•  For E.g., for overloading the ‘+’ operator, define a member

function named operator+

Common operators
•  The most commonly overloaded operators are

•  = (assignment operator)
•  + - * (binary arithmetic operators)
•  += -= *= (compound assignment operators)
•  == != (comparison operators)

Midterm topic list
•  General program organization and where C fits in the

ecosystem
•  System layers: C language, libraries, and operating system
•  General workflow needed to build a program – preprocessor,

compile, link
•  Preprocessor – how #include, #define, #ifndef and other basic

commands rewrite the program
•  Structure of C/C++ programs: header files, source files

•  Declarations vs definitions
•  Organization and use of header files, including #ifndef guards
•  Faking modularity in C – headers, implementations
•  Internal vs external linkage; use of static for internal linkage
•  Dependencies – what needs to be recompiled when something

changes (dependency graph behind make and similar tools)
•  Make and makefile basics – how build dependencies are encoded in

makefile rules

Topic List (Contd.)
•  C language and program execution
•  Review: standard types, operators, functions, scope, parameters, strings,

etc.
•  Extended integer types (int32_t, uint64_t)
•  Standard I/O library and streams: stdin, stdout, fopen, fread, scanf, printf,

etc.
•  POSIX libraries – wrappers for system calls

•  POSIX-layer I/O: open, read, write, etc.
•  Relationship between C standard library, POSIX library functions, and system calls

•  Error handling - error codes and errno
•  Process address space and memory map (code, static data, heap, stack)

•  Object lifetimes: static, automatic, dynamic (heap)
•  Stack and function calls – what happens during function call, return

•  Function parameters
•  Call by value semantics (including structs, pointers)
•  Arrays as parameters - pointers
•  Using pointers for call-by-reference semantics
•  Function pointers as parameters

Topic List (Contd.)
•  Pointers, pointers, pointers - &, *, and all that

•  Typing rules and pointer arithmetic (what does p+1 mean?)
•  Relationship between pointers and arrays, a[i] and pointer arithmetic
•  String constants, arrays of characters, C string library
•  Using void* as a “generic” pointer type
•  Casting
•  Dynamic allocation (malloc, free)
•  Potential bugs – memory leaks, dangling pointers (including returning

pointers to local data), etc.
•  Be able to draw and read diagrams showing storage and pointers, and

be able to trace code that manipulates these things.
•  Structs – how to define and use, meaning of p->x (= (*p).x)
•  Typedef – how to define and use
•  Linked data structures in C – linked lists, hash tables, etc.

Topic List (Contd.)
• C++
• Classes and modularity, namespaces

•  Be able to read simple class definitions and add to them,
implement functions, trace code, etc.

•  Know the difference between constructors, copy constructors, and
assignment and when these are called

•  Know what a destructor is and when it gets called

• Other basic differences from C
•  Simpler, type-safe stream I/O (cout, cin, << and >>)
•  Type-safe memory management (new, delete, delete[])
•  References – particularly reference parameters
•  More pervasive use of const (const data and parameters, const

member functions)

