
CSE 333 – SECTION 2
Memory Management

Questions, Comments, Concerns

• Do you have any?
• Exercises going ok?
•  Lectures make sense?
• Homework 1 – START NOW! (if you haven’t already)

Debugging with gdb

• Just like in CSE 351, gdb is your friend
• Unlike CSE 351, we will be debugging C/C++ code, not assembly

•  Instead of n(ext)i and s(tep)i, use n(ext) and s(tep)

• Your first instinct for bug fixing should be gdb, not printf
•  If you want something a little more friendly, use gdb –tui

•  It’s pretty darn helpful!

• Demo: [buggy.c]

Memory Management

•  Heap
-  Large pool of unused memory
-  malloc() allocates chunks of this

memory
-  free() deallocates memory and

reclaims space

•  Stack and stack frame
•  Stores temporary/local variables
•  Each function has its own stack

frame

•  Lifetime on heap vs. Lifetime on stack

Memory Errors

• Use of uninitialized memory
• Reading/writing memory after it has been freed – Dangling pointers
• Reading/writing to the end of malloc'd blocks
• Reading/writing to inappropriate areas on the stack
• Memory leaks where pointers to malloc'd blocks are lost
• Mismatched use of malloc/new/new[] vs free/delete/delete[]

Valgrind is your friend!!

Buggy Code

Code Fix

Code Fix

Basic Valgrind Usage

•  Note: Compile your C code with the GCC's -g option for debugging information.
•  Note: Valgrind accepts tags --leak-check=full and --show-reachable=yes to output

more details.

Use of uninitialized value

Illegal reads/writes

Illegal frees

Memory Leaks

Section exercise

• Handouts.
• Work with a partner, if you wish.
•  Look at the expandable vector code in imsobuggy.c.
•  First, try to find all the bugs by inspection.
•  Then try to use Valgrind on the same code.
• Code is located at
http://courses.cs.washington.edu/courses/cse333/15su/sections/sec2-code/

