
CSE333 SECTION 7



Midterm Debrief



Hex View

1. Find a hex editor.

2. Learn ‘goto offset’ command.

3. See HW3 pictures.

The header:

Magic word Checksum Doctable size Index size



Hex View

The doctable



Hex View

The index



Hex View

The docID table



Templates
class IntPair {

public:

IntPair(const int first, const int second)

: first_(first), second_(second) { }

int first() const { return first_; }

int second() const { return second_; }

private:

int first_;

int second_;

};

class DoublePair {

public:

DoublePair(const double first, const double second)

: first_(first), second_(second) { }

double first() const { return first_; }

double second() const { return second_; }

private:

double first_;

double second_;

};



Templates

class FooPair {

public:

FooPair(const Foo& first, const Foo& second)

: first_(first), second_(second) { }

Foo first() const { return first_; }

Foo second() const { return second_; }

private:

Foo first_;

Foo second_;

};

• This is really repetitive!



Templates

template <typename T>

class Pair {

public:

Pair(const T& first, const T& second)

: first_(first), second_(second) { }

T first() const { return first_; }

T second() const { return second_; }

private:

T first_;

T second_;

};



Templates

• Functions can be templated too

• Each “type” of template class/function generates distinct 

code

• Pair<int> and Pair<Foo> are two distinct classes with code 

located in two distinct regions of the binary

• Templates are generated at compile time

• Compiler needs to know how each template will be used

• Full definitions of templated code must be included in translation 

unit



Standard Template Library

• C++ comes with a rich set of templated collections

• cplusplus.com

• cppreference.com

• All collections pass by value (copy), not by reference

• Automatic resizing of a collection can trigger multiple copy 

operations

• One way to make this more efficient: move semantics

• Outside the scope of this class, but ask Sunjay about it any time

• Another way to avoid this: pass in pointers to data

• Memory management gets messy

• Use smart pointers!



Smart Pointers

• Encapsulate memory management through ctors/dtors

• Wraps a “normal” pointer

• Automatically calls delete when lifetime is over

• Three types:

• unique_ptr ensures only one pointer to underlying data

• Does this by disallowing copy construction/assignment

• You can still use it in STL containers though (move semantics!)

• shared_ptr keeps a reference count

• Only deletes wrapped pointer when reference count hits zero

• weak_ptr does not contribute to the reference count

• Think circular linked lists, you’d want a weak_ptr at the end of the list to 

ensure the reference count to the front can go down to 0.

• Very rarely used otherwise



Smart Pointer Examples

• unique_ptr.cc

• shared_ptr_leaky.cc

• shared_ptr_good.cc





Inheritance Examples

• Example:

• destructex.cc

• This code compiles with no warnings so it must be right?



Vtables

• Dynamic dispatch

• All virtual functions are stored in a “virtual function table”

• Each class has its own vtable

• Each instance contains an extra “field”

• Pointer to class vtable

• Only exists if class has virtual methods

• Derived classes have functions in same order as base 

class

• Overriding functions replace base functions at same indices



Vtable Example

class Base {

virtual void other_fn();

virtual void overridden();

};

class Derived {

void overridden() override;

};

class Base vtable

Base::other_fn()

Base::overridden()

class Derived vtable

Base::other_fn()

Derived::overridden()



Vtable Example

• Example:

• vtable.cc

• Poke around this code with objdump or gdb!


