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Administrivia

HW4 is due Thursday night 
- <panic> if you haven’t started yet </panic>  

- Usual late days apply if you have any left 

Final exam Wednesday, June 10, 8:30 am here 
- Overview/review in sections this week 

- Last minute Q&A Tuesday, June 9, 4:30 pm, EEB 045
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Some common HW4 bugs

Your server works, but is really really slow 
- check the 2nd argument to the QueryProcessor constructor 

Funny things happen after the first request 
- make sure you’re not destroying the HTTPConnection object 

too early (e.g., falling out of scope in a while loop) 

Server crashes on blank request 
- make sure you handle the case that read( )  [or WrappedRead] 

returns 0
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Previously
We implemented hw3 searchserver, but it was sequential 
- it processed requests one at a time, in spite of client 

interactions blocking for arbitrarily long periods of time 
‣ this led to terrible performance 

Servers should be concurrent 
- process multiple requests simultaneously 

‣ issue multiple I/O requests simultaneously 

‣ overlap the I/O of one request with computation of another 

‣ utilize multiple CPUs / cores



CSE333 lec 21 concurrency.2  // 06-01-15 // Perkins

Today
We’ll go over three versions of searchserver 
- sequential 

- concurrent 
‣ processes        [  fork( )  ] 

‣ threads            [  pthread_create( )  ] 

Alternative (which we won’t get to): non-blocking, event driven 
version 

‣ non-blocking I/O  [  select( ) ] 

Reference: Computer Systems: A Programmer’s Perspective  
- 351 textbook, good source for process/thread/OS ideas
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Sequential

look at searchserver_sequential/

listen_fd = Listen(port); 

while(1) { 
  client_fd = accept(listen_fd); 
  buf = read(client_fd); 
  resp = ProcessQuery(buf); 
  write(client_fd, resp); 
  close(client_fd); 
}

pseudocode:
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Whither sequential?

Benefits 
- super simple to build 

Disadvantages 
- incredibly poorly performing 

‣ one slow client causes all others to block 

‣ poor utilization of network, CPU
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fork( )

Fork is used to create a new process (the “child”) that is 
an exact clone of the current process (the “parent”) 
- everything is cloned (except threads) 

‣ all variables, file descriptors, open sockets, etc. 

‣ the heap, the stack, etc. 

- primarily used in two patterns 
‣ servers: fork a child to handle a connection 

‣ shells: fork a child, which then exec’s a new program

pid_t fork(void);
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fork( ) and address spaces

Remember this picture...? 
- a process executes within an 

address space 

- the address space includes: 
‣ a stack (for stack frames) 

‣ heap (for dynamically allocated data) 

‣ text segment (containing code) 

‣ etc.

0x00000000

0xFFFFFFFF
OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment 
.data, .bss

read-only segment 
.text, .rodata

SP

PC
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fork( ) and address spaces
Fork causes the OS to clone 
the address space, creating 
a brand new process 

- the new process starts life as 
a copy the old process in 
(nearly) every way 

- the copies of the heap, 
stack, text segment, etc. are 
(nearly) identical 

- the new process has copies 
of the parent’s data 
structures, stack-allocated 
variables, open file 
descriptors, and so on

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment 
.data, .bss

read-only segment 
.text, .rodata

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment 
.data, .bss

read-only segment 
.text, .rodata

parent childfork( )

SP

PC

SP

PC
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fork( )

fork( ) has peculiar semantics 
- the parent invokes fork( ) 

- the operating system clones 
the parent 

- both the parent and the child 
return from fork 
‣ parent receives child’s pid 

‣ child receives a “0” as pid

parent

OS

fork( )
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fork( )

fork( ) has peculiar semantics 
- the parent invokes fork( ) 

- the operating system clones 
the parent 

- both the parent and the child 
return from fork 
‣ parent receives child’s pid 

‣ child receives a “0” as pid

parent

OS

child

clone



CSE333 lec 21 concurrency.2  // 06-01-15 // Perkins

fork( )

fork( ) has peculiar semantics 
- the parent invokes fork( ) 

- the operating system clones 
the parent 

- both the parent and the child 
return from fork 
‣ parent receives child’s pid 

‣ child receives a “0” as pid

parent

OS

child

child pid 0
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fork( )

fork_example.cc
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Concurrency with processes

The parent process blocks on accept( ), waiting for a 
new client to connect 
- when a new connection arrives, the parent calls fork( ) to 

create a child process 

- the child process handles that new connection, and exit( )’s 
when the connection terminates 

Remember that children become “zombies” after death 
- option a)  parent calls wait( ) to “reap” children 

- option b)  use the double-fork trick
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Graphically

server
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Graphically

server

client
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Graphically

server

client

connect
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Graphically

server

client

server fork( ) child



CSE333 lec 21 concurrency.2  // 06-01-15 // Perkins

Graphically

server

client server

server
fork( ) grandchild
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Graphically

server

client server

child exit( )’s   /   parent wait( )’s
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Graphically

server

client server

parent closes its 
client connection
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Graphically

server

client server
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Graphically

server

client server

client

server
fork( ) child

server
fork( ) grandchild 
exit( )
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Graphically

server

client server

client server
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Graphically

server

client server

client server

client server

client server

client server

client server

client server

client server

client server
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Concurrent with processes

look at searchserver_processes
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Whither concurrent processes?
Benefits 
- almost as simple as sequential 

‣ in fact, most of the code is identical! 

- parallel execution; good CPU, network utilization 

Disadvantages 
- processes are heavyweight 

‣ relatively slow to fork 

‣ context switching latency is high 

- communication between processes is complicated
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How slow is fork?

run forklatency.cc
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Implications?

0.25 ms per fork 

- maximum of (1000 / 0.25) = 4,000 connections per second per core 

- ~0.5 billion connections per day per core 

‣ fine for most servers 

‣ too slow for a few super-high-traffic front-line web services 

• Facebook serves O(750 billion) page views per day 

• would need 3,000 -- 6,000 cores just to handle fork( ),                
i.e., without doing any work for each connection!
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threads

Threads are like lightweight processes 
- like processes, they execute concurrently 

‣ multiple threads can run simultaneously on multiple cores/CPUs 

- unlike processes, threads cohabit the same address space 
‣ the threads within a process see the same heap and globals 

• threads can communicate with each other through variables 

• but, threads can interfere with each other: need synchronization 

‣ each thread has its own stack
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threads and the address space

Pre- thread create 
- one thread of execution 

running in the address space 
‣ the “main” thread 

‣ therefore, one stack, SP, PC 

- that main thread invokes a 
function to create a new thread 
‣ typically “pthread_create( )”

OS kernel [protected]

stackparent

shared libraries

heap (malloc/free)

read/write segment 
.data, .bss

read-only segment 
.text, .rodataPCparent

SPparent
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threads and the address space
Post- thread create 
- two threads of execution 

running in the address space 
‣ the “main” thread (parent) 

‣ the child thread 

‣ thus, two stacks, SPs, PCs 

- both threads share the heap 
and text segment (globals) 
‣ they can cooperatively modify 

shared data

OS kernel [protected]

shared libraries

heap (malloc/free)

read/write segment 
.data, .bss

read-only segment 
.text, .rodata

stackparent

stackchild

SPparent

SPchild

PCchild

PCparent
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threads

see thread_example.cc
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Concurrent server with threads

A single process handles all of the connections 
- but, a parent thread forks (or dispatches) a new thread to 

handle each connection 

- the child thread: 
‣ handles the new connection 

‣ exits when the connection terminates
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Graphically

server

accept( )
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Graphically

server

accept( )

client
connect
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Graphically

server
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client
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Graphically

server

client
pthread_create( )
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Graphically

server

client
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Graphically

server

client

client
pthread_create( )
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Graphically

server

client

client

client

client

client

client

shared 
data 

structures



CSE333 lec 21 concurrency.2  // 06-01-15 // Perkins

Concurrent with threads

look at searchserver_threads/
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Whither concurrent threads?
Benefits 
- straight-line code 

‣ still the case that much of the code is identical to sequential! 

- parallel execution; good CPU, network utilization 

‣ lower overhead than processes 

- shared-memory communication is possible 

Disadvantages 
- synchronization is complicated 

- shared fate within a process; one rogue thread can hurt you badly
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How fast is pthread_create?

run threadlatency.cc
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Implications?

0.036 ms per thread create; ~10x faster than process forking 

- maximum of (1000 / 0.018) = ~60,000 connections per second 

- ~10 billion connections per day per core 

‣ much better 

But, writing safe multithreaded code can be serious voodoo
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Thread Pools

In real servers we’d like to avoid overhead needed to 
create a new thread or process for every request 

Idea: thread pools 
- Create a set of worker threads or processes on server 

startup, put them in a queue 

- When a request arrives, remove the first worker thread from 
the queue and assign it to handle the request 

- When a worker is done it places itself back on the queue and 
then sleeps until dequeued and handed a new request
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Threads and races

What happens if two threads try to mutate the same data 
structure? 
- they might interfere in painful, non-obvious ways, depending 

on the specifics of the data structure 
‣ imagine if two threads try to push an item onto the head of the 

linked list at the same time 

‣ depending on how the threads interleave, you might end up with a 
correct answer, or you might break the data structure altogether
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Simple “race” example

If no milk, buy some more 
- liveness: if out, somebody buys 

- safety: at most one person buys 

What happens with multiple 
threads?

   if (!milk) { 
     buy milk 
   }
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Simple “race” example

Does this fix the problem?

 if (!note) { 
   if (!milk) { 
     leave note 
     buy milk 
     remove note 
   } 
 }
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Synchronization

Synchronization is the act of preventing two (or more) 
concurrently running threads from interfering with each 
other when operating on shared data 
- need some mechanism to coordinate the threads 

‣ “let me go first, then you go” 

- many different coordination mechanisms have been invented 
‣ take cse451 for details



CSE333 lec 21 concurrency.2  // 06-01-15 // Perkins

Locks
lock acquire 
- wait until the lock is free, then take it 

lock release 
- release the lock 
- if other threads are waiting for it 

‣ wake up exactly one of them 
‣ give it the lock 

simplifies concurrent code 
- prevents more than one thread from 

entering a critical section

 ... non-critical code ... 

 lock.acquire(); 
   critical section 
 lock.release(); 

 ... non-critical code ...
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Simple “race” solution

What is the critical section? 
- checking for milk 

- buying more milk if out 

These two steps must be 
uninterrupted, i.e., atomic 
- solution: protect the critical 

section with a lock

 milk_lock.lock() 

 if (!milk) { 
   buy milk 
 } 

 milk_lock.unlock()
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pthreads and locks

pthread_mutex_init( ) 
- creates a mutex (a.k.a. a lock) 

pthread_mutex_lock( ) 
- grabs the lock 

pthread_mutex_unlock( ) 
- releases the lock

see lock_example.cc
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C++ 11 Threads
C++ 11 added threads and concurrency to the libraries 
- <thread> - thread objects 

- <mutex> - locks to handle critical sections 

- <condition_variable> - used to block objects until notified to resume 

- <atomic> - indivisible, atomic operations 

- <future> - asynchronous access to data 

Might be built on top of <pthread.h>, maybe not 

Definitely use in C++ 11 code, but pthread will still be around 
for a long, long time
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Exercise 1

Write a simple “proxy” server 
- forks a process for each connection 

- reads an HTTP request from the client 
‣ relays that request to www.cs.washington.edu 

- reads the response from www.cs.washington.edu 
‣ relays the response to the client, closes the connection 

Try visiting your proxy using a web browser :)
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Exercise 2

Write a client program that: 
- loops, doing “requests” in a loop.  Each request must: 

‣ connect to one of the echo servers from the lecture 

‣ do a network exchange with the server 

‣ close the connection 

- keeps track of the latency (time to do a request) distribution 

- keeps track of the throughput (requests / s) 

- prints these out
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See you on Friday !


