
CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

CSE 333
Lecture 21 -- fork, pthread_create

Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Administrivia

HW4 is due Thursday night
- <panic> if you haven’t started yet </panic>

- Usual late days apply if you have any left

Final exam Wednesday, June 10, 8:30 am here
- Overview/review in sections this week

- Last minute Q&A Tuesday, June 9, 4:30 pm, EEB 045

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Some common HW4 bugs

Your server works, but is really really slow
- check the 2nd argument to the QueryProcessor constructor

Funny things happen after the first request
- make sure you’re not destroying the HTTPConnection object

too early (e.g., falling out of scope in a while loop)

Server crashes on blank request
- make sure you handle the case that read() [or WrappedRead]

returns 0

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Previously
We implemented hw3 searchserver, but it was sequential
- it processed requests one at a time, in spite of client

interactions blocking for arbitrarily long periods of time
‣ this led to terrible performance

Servers should be concurrent
- process multiple requests simultaneously

‣ issue multiple I/O requests simultaneously

‣ overlap the I/O of one request with computation of another

‣ utilize multiple CPUs / cores

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Today
We’ll go over three versions of searchserver
- sequential

- concurrent
‣ processes [fork()]

‣ threads [pthread_create()]

Alternative (which we won’t get to): non-blocking, event driven
version

‣ non-blocking I/O [select()]

Reference: Computer Systems: A Programmer’s Perspective
- 351 textbook, good source for process/thread/OS ideas

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Sequential

look at searchserver_sequential/

listen_fd = Listen(port);

while(1) {
 client_fd = accept(listen_fd);
 buf = read(client_fd);
 resp = ProcessQuery(buf);
 write(client_fd, resp);
 close(client_fd);
}

pseudocode:

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Whither sequential?

Benefits
- super simple to build

Disadvantages
- incredibly poorly performing

‣ one slow client causes all others to block

‣ poor utilization of network, CPU

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork()

Fork is used to create a new process (the “child”) that is
an exact clone of the current process (the “parent”)
- everything is cloned (except threads)

‣ all variables, file descriptors, open sockets, etc.

‣ the heap, the stack, etc.

- primarily used in two patterns
‣ servers: fork a child to handle a connection

‣ shells: fork a child, which then exec’s a new program

pid_t fork(void);

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork() and address spaces

Remember this picture...?
- a process executes within an

address space

- the address space includes:
‣ a stack (for stack frames)

‣ heap (for dynamically allocated data)

‣ text segment (containing code)

‣ etc.

0x00000000

0xFFFFFFFF
OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

SP

PC

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork() and address spaces
Fork causes the OS to clone
the address space, creating
a brand new process

- the new process starts life as
a copy the old process in
(nearly) every way

- the copies of the heap,
stack, text segment, etc. are
(nearly) identical

- the new process has copies
of the parent’s data
structures, stack-allocated
variables, open file
descriptors, and so on

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

parent childfork()

SP

PC

SP

PC

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork()

fork() has peculiar semantics
- the parent invokes fork()

- the operating system clones
the parent

- both the parent and the child
return from fork
‣ parent receives child’s pid

‣ child receives a “0” as pid

parent

OS

fork()

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork()

fork() has peculiar semantics
- the parent invokes fork()

- the operating system clones
the parent

- both the parent and the child
return from fork
‣ parent receives child’s pid

‣ child receives a “0” as pid

parent

OS

child

clone

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork()

fork() has peculiar semantics
- the parent invokes fork()

- the operating system clones
the parent

- both the parent and the child
return from fork
‣ parent receives child’s pid

‣ child receives a “0” as pid

parent

OS

child

child pid 0

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

fork()

fork_example.cc

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Concurrency with processes

The parent process blocks on accept(), waiting for a
new client to connect
- when a new connection arrives, the parent calls fork() to

create a child process

- the child process handles that new connection, and exit()’s
when the connection terminates

Remember that children become “zombies” after death
- option a) parent calls wait() to “reap” children

- option b) use the double-fork trick

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client

connect

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client

server fork() child

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

server
fork() grandchild

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

child exit()’s / parent wait()’s

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

parent closes its
client connection

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

client

server
fork() child

server
fork() grandchild
exit()

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

client server

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client server

client server

client server

client server

client server

client server

client server

client server

client server

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Concurrent with processes

look at searchserver_processes

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Whither concurrent processes?
Benefits
- almost as simple as sequential

‣ in fact, most of the code is identical!

- parallel execution; good CPU, network utilization

Disadvantages
- processes are heavyweight

‣ relatively slow to fork

‣ context switching latency is high

- communication between processes is complicated

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

How slow is fork?

run forklatency.cc

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Implications?

0.25 ms per fork

- maximum of (1000 / 0.25) = 4,000 connections per second per core

- ~0.5 billion connections per day per core

‣ fine for most servers

‣ too slow for a few super-high-traffic front-line web services

• Facebook serves O(750 billion) page views per day

• would need 3,000 -- 6,000 cores just to handle fork(),
i.e., without doing any work for each connection!

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

threads

Threads are like lightweight processes
- like processes, they execute concurrently

‣ multiple threads can run simultaneously on multiple cores/CPUs

- unlike processes, threads cohabit the same address space
‣ the threads within a process see the same heap and globals

• threads can communicate with each other through variables

• but, threads can interfere with each other: need synchronization

‣ each thread has its own stack

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

threads and the address space

Pre- thread create
- one thread of execution

running in the address space
‣ the “main” thread

‣ therefore, one stack, SP, PC

- that main thread invokes a
function to create a new thread
‣ typically “pthread_create()”

OS kernel [protected]

stackparent

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodataPCparent

SPparent

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

threads and the address space
Post- thread create
- two threads of execution

running in the address space
‣ the “main” thread (parent)

‣ the child thread

‣ thus, two stacks, SPs, PCs

- both threads share the heap
and text segment (globals)
‣ they can cooperatively modify

shared data

OS kernel [protected]

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

stackparent

stackchild

SPparent

SPchild

PCchild

PCparent

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

threads

see thread_example.cc

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Concurrent server with threads

A single process handles all of the connections
- but, a parent thread forks (or dispatches) a new thread to

handle each connection

- the child thread:
‣ handles the new connection

‣ exits when the connection terminates

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

accept()

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

accept()

client
connect

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

accept()

client

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client
pthread_create()

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client

client
pthread_create()

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Graphically

server

client

client

client

client

client

client

shared
data

structures

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Concurrent with threads

look at searchserver_threads/

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Whither concurrent threads?
Benefits
- straight-line code

‣ still the case that much of the code is identical to sequential!

- parallel execution; good CPU, network utilization

‣ lower overhead than processes

- shared-memory communication is possible

Disadvantages
- synchronization is complicated

- shared fate within a process; one rogue thread can hurt you badly

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

How fast is pthread_create?

run threadlatency.cc

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Implications?

0.036 ms per thread create; ~10x faster than process forking

- maximum of (1000 / 0.018) = ~60,000 connections per second

- ~10 billion connections per day per core

‣ much better

But, writing safe multithreaded code can be serious voodoo

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Thread Pools

In real servers we’d like to avoid overhead needed to
create a new thread or process for every request

Idea: thread pools
- Create a set of worker threads or processes on server

startup, put them in a queue

- When a request arrives, remove the first worker thread from
the queue and assign it to handle the request

- When a worker is done it places itself back on the queue and
then sleeps until dequeued and handed a new request

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Threads and races

What happens if two threads try to mutate the same data
structure?
- they might interfere in painful, non-obvious ways, depending

on the specifics of the data structure
‣ imagine if two threads try to push an item onto the head of the

linked list at the same time

‣ depending on how the threads interleave, you might end up with a
correct answer, or you might break the data structure altogether

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Simple “race” example

If no milk, buy some more
- liveness: if out, somebody buys

- safety: at most one person buys

What happens with multiple
threads?

 if (!milk) {
 buy milk
 }

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Simple “race” example

Does this fix the problem?

 if (!note) {
 if (!milk) {
 leave note
 buy milk
 remove note
 }
 }

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Synchronization

Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
- need some mechanism to coordinate the threads

‣ “let me go first, then you go”

- many different coordination mechanisms have been invented
‣ take cse451 for details

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Locks
lock acquire
- wait until the lock is free, then take it

lock release
- release the lock
- if other threads are waiting for it

‣ wake up exactly one of them
‣ give it the lock

simplifies concurrent code
- prevents more than one thread from

entering a critical section

 ... non-critical code ...

 lock.acquire();
 critical section
 lock.release();

 ... non-critical code ...

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Simple “race” solution

What is the critical section?
- checking for milk

- buying more milk if out

These two steps must be
uninterrupted, i.e., atomic
- solution: protect the critical

section with a lock

 milk_lock.lock()

 if (!milk) {
 buy milk
 }

 milk_lock.unlock()

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

pthreads and locks

pthread_mutex_init()
- creates a mutex (a.k.a. a lock)

pthread_mutex_lock()
- grabs the lock

pthread_mutex_unlock()
- releases the lock

see lock_example.cc

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

C++ 11 Threads
C++ 11 added threads and concurrency to the libraries
- <thread> - thread objects

- <mutex> - locks to handle critical sections

- <condition_variable> - used to block objects until notified to resume

- <atomic> - indivisible, atomic operations

- <future> - asynchronous access to data

Might be built on top of <pthread.h>, maybe not

Definitely use in C++ 11 code, but pthread will still be around
for a long, long time

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Exercise 1

Write a simple “proxy” server
- forks a process for each connection

- reads an HTTP request from the client
‣ relays that request to www.cs.washington.edu

- reads the response from www.cs.washington.edu
‣ relays the response to the client, closes the connection

Try visiting your proxy using a web browser :)

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

Exercise 2

Write a client program that:
- loops, doing “requests” in a loop. Each request must:

‣ connect to one of the echo servers from the lecture

‣ do a network exchange with the server

‣ close the connection

- keeps track of the latency (time to do a request) distribution

- keeps track of the throughput (requests / s)

- prints these out

CSE333 lec 21 concurrency.2 // 06-01-15 // Perkins

See you on Friday !

