
CSE333 lec 17 networks.2 // 05-20-15 // Perkins

CSE 333
Lecture 17 -- network programming intro

Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Administrivia

HW3 due Thursday night

HW4 out by Friday morning
- Due last Thursday of the quarter (2 weeks)

- OK to use up to 2 late days if you still have them

Sections tomorrow: networking (DNS, TCP client side, ...)

No new exercises due this week
- Next exercise due after the long weekend, out by Fri. morning

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Today

Network programming
- dive into the Berkeley / POSIX sockets API

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Files and file descriptors

Remember open, read, write, and close?
- POSIX system calls for interacting with files

- open() returns a file descriptor
‣ an integer that represents an open file

‣ inside the OS, it’s an index into a table that keeps track of any state
associated with your interactions, such as the file position

‣ you pass the file descriptor into read, write, and close

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Networks and sockets

UNIX likes to make all I/O look like file I/O
- the good news is that you can use read() and write() to

interact with remote computers over a network!

- just like with files....
‣ your program can have multiple network channels open at once

‣ you need to pass read() and write() a file descriptor to let the OS
know which network channel you want to write to or read from

- a file descriptor used for network communications is a socket

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Pictorially

Web server

fd 5 fd 8 fd 9 fd 3

ind
ex

.h
tm

l

pi
c.

pn
g

client client

10.12.3.4 : 5544 44.1.19.32 : 7113

128.95.4.33

8080

Internet

file
descriptor type connected to?

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP
socket

local: 128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP
socket

local: 128.95.4.33:80
remote: 102.12.3.4:5544

OS’s descriptor table

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Types of sockets
Stream sockets
- for connection-oriented, point-to-point, reliable bytestreams

‣ uses TCP, SCTP, or other stream transports

Datagram sockets
- for connection-less, one-to-many, unreliable packets

‣ uses UDP or other packet transports

Raw sockets
- for layer-3 communication (raw IP packet manipulation)

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Stream sockets
Typically used for client / server
communications
- but also for other architectures,

like peer-to-peer

Client
- an application that establishes a

connection to a server

Server
- an application that receives

connections from clients

client server

1. establish connection

client server

2. communicate

server

3. close connection

client

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Datagram sockets

Used less frequently than stream
sockets
- they provide no flow control,

ordering, or reliability

Often used as a building block
- streaming media applications

- sometimes, DNS lookups

host

host

1. create socket

host

host

1. create socket

1. create socket

host

host

2. communicate

host

host

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

The sockets API

Berkeley sockets originated in 4.2 BSD Unix circa 1983
- it is the standard API for network programming

‣ available on most OSs

POSIX socket API
- a slight updating of the Berkeley sockets API

‣ a few functions were deprecated or replaced

‣ better support for multi-threading was added

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Let’s dive into it!

We’ll start by looking at the API from the point of view of
a client connecting to a server over TCP
- there are five steps:

1. figure out the IP address and port to which to connect

2. create a socket

3. connect the socket to the remote server

4. read() and write() data using the socket

5. close the socket

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Connecting from a client to a server.

Step 1. Figure out the IP address and port to which to connect.

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Network addresses

For IPv4, an IP address is a 4-byte tuple
- e.g., 128.95.4.1 (80:5f:04:01 in hex)

For IPv6, an IP address is a 16-byte tuple
- e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33

‣ 2d01:0db8:f188::1f33 in shorthand

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

IPv4 address structures
// Port numbers and addresses are in *network order*.

// A mostly-protocol-independent address structure.
struct sockaddr {
 short int sa_family; // Address family; AF_INET, AF_INET6
 char sa_data[14]; // 14 bytes of protocol address
};

// An IPv4 specific address structure.
struct sockaddr_in {
 short int sin_family; // Address family, AF_INET == IPv4
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Same size as struct sockaddr
};

struct in_addr {
 uint32_t s_addr; // IPv4 address
};

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

// A structure big enough to hold either IPv4 or IPv6 structures.
struct sockaddr_storage {
 sa_family_t ss_family; // address family

 // a bunch of padding; safe to ignore it.
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};

// An IPv6 specific address structure.
struct sockaddr_in6 {
 u_int16_t sin6_family; // address family, AF_INET6
 u_int16_t sin6_port; // Port number
 u_int32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 u_int32_t sin6_scope_id; // Scope ID
};

struct in6_addr {
 unsigned char s6_addr[16]; // IPv6 address
};

IPv6 address structures

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Generating these structures
Often you have a string representation of an address
- how do you generate one of the address structures?

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in sa; // IPv4
 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in.
 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 return EXIT_SUCCESS;
}

genaddr.cc

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Generating these structures
How about going in reverse?

#include <stdlib.h>
#include <arpa/inet.h>
#include <iostream>

int main(int argc, char **argv) {
 struct sockaddr_in6 sa6; // IPv6
 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.
 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
 std::cout << astring << std::endl;

 return EXIT_SUCCESS;
}

genstring.cc

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

DNS
People tend to use DNS names, not IP addresses
- the sockets API lets you convert between the two

- it’s a complicated process, though:
‣ a given DNS name can have many IP addresses

‣ many different DNS names can map to the same IP address

• an IP address will reverse map into at most one DNS names, and
maybe none

‣ a DNS lookup may require interacting with many DNS servers

You can use the “dig” Linux program to explore DNS
- “man dig”

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

DNS hierarchy

.

“.” -- root name servers
198.41.0.4 (a.root-servers.net)
192.228.79.201 (b.root-servers.net)

202.12.27.33 (m.root-servers.net)
• • •

com xxx uk org• • • “.com.” -- top-level domain server

google yahoo hulu Gribble apache fsf• • •• • •

www mail docs finance• • • seattle www

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Resolving DNS names

The POSIX way is to use getaddrinfo()
- a pretty complicated system call; the basic idea...

‣ set up a “hints” structure with constraints you want respected

• e.g., IPv6, IPv4, or either

‣ tell getaddrinfo() which host and port you want resolved

• host: a string representation; DNS name or IP address

‣ getaddrinfo() gives you a list of results packet in an “addrinfo” struct

‣ free the addrinfo structure using freeaddrinfo()

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

DNS lookup example

see dnsresolve.cc

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Connecting from a client to a server.

Step 2. Create a socket.

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Creating a socket
Use the socket system call
- creating a socket doesn’t yet bind it to a local address or port

#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <iostream>

int main(int argc, char **argv) {
 int socket_fd = socket(PF_INET, SOCK_STREAM, 0);
 if (socket_fd == -1) {
 std::cerr << strerror(errno) << std::endl;
 return EXIT_FAILURE;
 }
 close(socket_fd);
 return EXIT_SUCCESS;
}

socket.cc

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Connecting from a client to a server.

Step 3. Connect the socket to the remote server.

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

connect()
The connect() system call establishes a connection to a
remote host
- you pass the following arguments to connect():

‣ the socket file descriptor you created in step 2

‣ one of the address structures you created in step 1

- connect may take some time to return
‣ it is a blocking call by default

‣ the network stack within the OS will communicate with the remote
host to establish a TCP connection to it

‣ this involves ~2 round trips across the network

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

connect example

see connect.cc

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Connecting from a client to a server.

Step 4. read() and write() data using the socket.

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

read()

By default, a blocking call
- if there is data that has already been received by the network

stack, then read will return immediately with it
‣ thus, read might return with less data than you asked for

- if there is no data waiting for you, by default read() will block
until some arrives
‣ pop quiz: how might this cause deadlock?

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

write()
By default, a blocking call
- but, in a more sneaky way

- when write() returns, the receiver (i.e., the other end of the
connection) probably has not yet received the data
‣ in fact, the data might not have been sent on the network yet!

‣ write() enqueues your data in a send buffer in the OS, and then
returns; the OS will transmit the data in the background

- if there is no more space left in the send buffer, by default
write() will block
‣ how might this cause deadlock?

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

read/write example

see sendreceive.cc

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Connecting from a client to a server.

Step 5. close() the socket.

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

See you on Friday!

CSE333 lec 17 networks.2 // 05-20-15 // Perkins

Exercise 1

Write a client that:
- reads DNS names, one per line, from stdin

- translates each name to one or more IP addresses

- prints out each IP address to stdout, one per line

