CoE 333

| ecture 8 - low-level I/O

Hal Perkins
Department of Computer Science & Engineering
University of Washington

S
S

CSEB333 lec 8 /0 // 04-15-15 // Perkins

Administrivia

First, before we talk about HW1.... No new exercise today!
HW1 due in < 1 week

Watch that hashtable.c doesn’t violate the modularity of Il.h

Watch for pointers to local (stack) variables - don’t store in persistent data
What do you do if one of the test_suite tests fails and it’s not obvious why?
Debug: segfault? use gdb (bt, ...); make small tests; breakpoints in Verify333

Suggestion from past graders: clean up the “to do” comments, but leave the
“step 17, “step 2” markers so they can find things quickly

Extra credit: if you add unit tests, put them in a new file and adjust the makefile
Quiz: what is the late day policy?

Quiz: what happens if you re-submit the project after first turnin?

CSEB333 lec 8 /O // 04-15-15 // Perkins

Administrivia - Code Quality

Code quality (“style”) matters - and not just for classes

Rule #0: reader’s time is much more important than writer’s
- Good comments are essential, clarity/understandibility is critical
- Good comments ultimately save writer’s time too!

Rule #1: match existing code

Rule #2: use tools. examples:
- Compiler warnings: just fix them!

- clint style warnings: fix most of them; be sure you understand anything you don’t fix
and can justify it (ok to have a type as malloc parameter or use readdir, not ok to
have spaces instead of tabs or magic numbers instead of #define, etc., ...)

- valgrind warnings: fix all of them unless you know why it’s not an error (example:
reading/printing uninitialized bytes in a debugging tool)

CSEB333 lec 8 /O // 04-15-15 // Perkins

L ower-level flle access

your
program
Remember this picture? © standard s
- your program can access i glibc
many layers of APIs i Sysggugalls
» G standard library
> POSlX Compatibility APJ architecture-independent code

» underlying OS system calls

architecture-dependent code

Linux kernel

CSEB333 lec 8 /O // 04-15-15 // Perkins

So far...

You've used the C standard library to access files

- gpecifically, fopen, fread, fwrite, fclose, fseek

» these provide a (FILE *) stream abstraction

These are convenient and portable...
- but, they are buffered

- and, they are implemented by using lower-level OS calls

CSEB333 lec 8 /O // 04-15-15 // Perkins

L ower-level flle access

Most UNIX-en support a common set of lower-level file
access APls

- open, read, write, close, fseek
» similar in spirit to their fopen (etc.) counterparts
» but, lower-level and unbuffered

e (well, unbuffered from user’s perspective; OS does its own
buffering at least for disk blocks)

» and, less convenient

- you Wwill have to use these for network 1/0O, so we might as
well learn them now

CSEB333 lec 8 /O // 04-15-15 // Perkins

open / close

8 Y
#include <fcntl.h>
To open a file...
- pass in the filename and access | »t fd = °Pe“‘;f;;6;§')'(
mode, similar to fopen AT :
: : perror ("open failed");
- get back a “file descriptor” exit (EXIT FAILURE);
}
» similar to a (FILE *) from fopen,
but is just an int
close(fd);
A\ 4

CSEB333 lec 8 I/0 // 04-15-15 // Perkins

Reading from a file

ssize_t read(int fd, void *buf, size_t count);

- returns the # of bytes read
» might be fewer bytes than you requested (!!)
» returns O if you're at end-of-file

» return -1 on error

- warning: read has some very surprising error modes!

CSEB333 lec 8 /O // 04-15-15 // Perkins

read() error modes

On error, the “errno” global variable is set
- you need to check it to see what Kind of error happened
What errors might read() encounter?
- EBADF -- bad file descriptor
- EFAULT -- output buffer is not a valid address
- EINTR -- read was interrupted, please try again
» arghl!!!
- and many others

CSEB333 lec 8 /O // 04-15-15 // Perkins

How to read() n bytes

a

#include <errno.h>
#include <unistd.h>

char *buf = ...;
int bytes_left = n;
int result = 0;

while (bytes_left > 0) {
result = read(fd, buf + (n-bytes_left), bytes left);

if (result == -1) {
if (errno != EINTR)) {
// a real error happened, return an error result
}
// EINTR happened, do nothing and loop back around
continue;
}
bytes left -= result;

_

_4
CSE333 lec 8 I/O // 04-15-15 // Perkins

Other low-level functions

Read the man pages to learn about:
- write() -- write data
- fsync() -- flush data to the underlying device

- opendir(), readdir(), closedir() -- get a directory listing
» make sure you read the section 3 version, e.g.:
e man 3 opendir

» kind of painful to use

CSEB333 lec 8 /O // 04-15-15 // Perkins

A useful cheat-sheet

From a CMU systems programming course:

http://www.cs.cmu.edu/~guna/15-12351 1/l ectures/l ecture?24.pdf

CSEB333 lec 8 /O // 04-15-15 // Perkins

See you on Friday!

CSEB333 lec 8 /O // 04-15-15 // Perkins

