
CSE 333 – SECTION 4
References, const and classes

HW2

• Index the contents of files

• Search through documents containing specified words

• Feels good when you complete it

This or that?

• Consider the following code:

Pointers: References:

int i; int i;

int *pi = &i; int &ri = i;

In both cases,

The difference lies in how they are used in expressions:
*pi = 4; ri = 4;

Pointers and References

• Once a reference is created, it cannot be later made to

reference another object.

• Compare to pointers, which are often reassigned.

• References cannot be null, whereas pointers can.

• References can never be uninitialized. It is also

impossible to reinitialize a reference.

C++ const declaration

• As a declaration specifier, const is a type specifier that

makes objects unmodifiable.

const int m = 255;

• Reference to constant integer:

int n = 100;

const int &ri = n; //ri becomes read only

When to use?

• Function parameter types and return types and functions

that declare overloaded operators.

• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from

one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its

lifetime.

• Style Guide Tip:

• use const reference parameters to pass input

• use pointers to pass output parameters

• input parameters first, then output parameters last

C++ Classes

/* Note: This code is unfinished! Beware! */

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() { return x_; } // inline member function

int get_y() { return y_; } // inline member function

double distance(const Point &p); // member function

void setLocation(const int x, const int y); //member function

private:

int x_; // data member

int y_; // data member

}; // class Point

