
CSE 333 – SECTION 2

Manual Memory Management: Mastering malloc()



Office Hours

• Hal

• Mondays, 4pm-5pm (CSE 548)

• Or by appointment

• Or just drop in if the door’s open

• Renshu

• Tuesdays, 3:30pm-4:30pm (CSE 006)

• Johnny

• Wednesdays, 3:30pm-4:30pm (CSE 006)

• Sunjay

• Thursdays (that’s today!), 3:30pm-4:30pm (CSE 006)

• Cortney

• Fridays, 3:30pm-4:30pm (CSE 006)

• Discussion board!

• All day, every day



Questions, Comments, Concerns

• Do you have any?

• Exercises going ok?

• Lectures make sense?

• Looked at the homework?



Using the Heap

• Why is this necessary?

• Lifetime on the stack

• Lifetime on the heap



Memory Management

• C gives you the power to manage your own memory

• C does very little for you

• Benefits? Disadvantages?

• When would you want this vs. automatic memory management?



Memory Management Done Right

• Need to let the system know when we are done with a chunk of memory

• In general, every malloc() must (eventually) be matched by a free()

• Example:

• [lec04_code/arraycopy.c]



Memory Management Details

• When are we done with a piece of data?

• Depends on where we got it from, how we are using it, etc.

• Some functions expect allocated space, others allocate for you

• sprintf() vs asprintf()

• Some APIs expect you to free structures, others free for you

• Compare / contrast?



Memory Management Gone Horribly Wrong

• Many (many!) ways to mess up

• Dangling pointers

• Double frees

• Incorrect frees

• Never frees

• That’s just a few

• Small example: [badlylinkedlist.c]



Valgrind Is Your Friend

• Use of uninitialized memory

• Use of memory you shouldn’t be using

• Memory leaks

• Definitely Lost

• Indirectly Lost

• Possibly Lost

• Still Reachable*

• Simply run: valgrind <program>

• Small example: [imsobuggy.c]

*This is generally ok


