
CSE333 lec 8 I/O // 01-24-14 // Perkins

CSE 333
Lecture 8 - low-level I/O

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec 8 I/O // 01-24-14 // Perkins

Administrivia

HW1 due Tuesday night

- Some good stuff on the discussion board

- Watch that hashtable.c doesn’t violate the modularity of ll.h

- Watch for pointers to local (stack-allocated) variables - don’t store them in
persistent data structures

- What do you do if one of the tests fails and it’s not obvious why?

- Extra credit: if you add unit tests, it would help if they were in a new file and
you adjusted the makefile accordingly.

- Quiz: what is the late day policy?

- Quiz: what happens if you re-submit the project after first turnin?

CSE333 lec 8 I/O // 01-24-14 // Perkins

Administrivia 2

email sent yesterday about updating the CSE Linux home
VM + missing man pages

- & more on the discussion board

One more exercise due Monday before class, then
nothing until after HW1 due

Next lectures: Start C++ (!!)

CSE333 lec 8 I/O // 01-24-14 // Perkins

Lower-level file access

Remember this picture?

- your program can access
many layers of APIs

‣ C standard library

‣ POSIX compatibility API

‣ underlying OS system calls

 your
 program

glibc

C standard
library POSIX

architecture-dependent code

architecture-independent code

Linux kernel

Linux
system calls

CSE333 lec 8 I/O // 01-24-14 // Perkins

So far...

You’ve used the C standard library to access files

- specifically, fopen, fread, fwrite, fclose, fseek

‣ these provide a (FILE *) stream abstraction

These are convenient and portable...

- but, they are buffered

- and, they are implemented by using lower-level OS calls

CSE333 lec 8 I/O // 01-24-14 // Perkins

Lower-level file access

Most UNIX-en support a common set of lower-level file
access APIs

- open, read, write, close, fseek

‣ similar in spirit to their fopen (etc.) counterparts

‣ but, lower-level and unbuffered

• (well, unbuffered from user’s perspective; OS does its own
buffering at least for disk blocks)

‣ and, less convenient

- you will have to use these for network I/O, so we might as
well learn them now

CSE333 lec 8 I/O // 01-24-14 // Perkins

open / close

To open a file...

- pass in the filename and access
mode, similar to fopen

- get back a “file descriptor”

‣ similar to a (FILE *) from fopen,
but is just an int

#include <fcntl.h>

...

 int fd = open("foo.txt",
 O_RDONLY);
 if (fd == -1) {
 perror("open failed");
 exit(EXIT_FAILURE);
 }

...

 close(fd);

CSE333 lec 8 I/O // 01-24-14 // Perkins

Reading from a file

 ssize_t read(int fd, void *buf, size_t count);

- returns the # of bytes read

‣ might be fewer bytes than you requested (!!!)

‣ returns 0 if you’re at end-of-file

‣ return -1 on error

- warning: read has some very surprising error modes!

CSE333 lec 8 I/O // 01-24-14 // Perkins

read() error modes

On error, the “errno” global variable is set

- you need to check it to see what kind of error happened

What errors might read() encounter?

- EBADF -- bad file descriptor

- EFAULT -- output buffer is not a valid address

- EINTR -- read was interrupted, please try again

‣ argh!!!

- and many others

CSE333 lec 8 I/O // 01-24-14 // Perkins

How to read() n bytes
#include <errno.h>
#include <unistd.h>

...

 char *buf = ...;
 int bytes_left = n;
 int result = 0;

 while (bytes_left > 0) {
 result = read(fd, buf + (n-bytes_left), bytes_left);
 if (result == -1) {
 if (errno != EINTR)) {
 // a real error happened, return an error result
 }
 // EINTR happened, do nothing and loop back around
 continue;
 }
 bytes_left -= result;
 }

CSE333 lec 8 I/O // 01-24-14 // Perkins

Other low-level functions

Read the man pages to learn about:

- write() -- write data

- fsync() -- flush data to the underlying device

- opendir(), readdir(), closedir() -- get a directory listing

‣ make sure you read the section 3 version, e.g.:

• man 3 opendir

‣ kind of painful to use

CSE333 lec 8 I/O // 01-24-14 // Perkins

A useful cheat-sheet

From a CMU systems programming course:

 http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE333 lec 8 I/O // 01-24-14 // Perkins

See you on Monday!

