
 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 1 of 8

Question 1. (44 points) C hacking – a question of several parts.

The next several pages are questions about a linked list of 2-D points. Each point is

represented by a Point struct containing the point’s x and y coordinates:

typedef struct point { // a 2-D point

 double x; // x and y coordinates

 double y;

} Point;

A list of points is a single-linked list, where each node contains a pointer to its associated

Point struct and a pointer to the next node in the list, if there is one.

typedef struct pt_node { // node in a linked list of Points

 Point * pt; // point owned by this node

 struct pt_node * next; // next list node, or NULL if none

} Ptnode;

All of the data in the list (points and nodes) is owned by the list and allocated on the

heap. Point and node structs are created and initialized when they are added to the list.

Example: A list containing the points (1.0, 2.0) and (3.0, 4.0) would be drawn like this:

 list

Answer the questions that use this list structure on the following pages. You can detach

this page from the test for reference while you are working if that is convenient.

x 1.0

y 2.0

x 3.0

y 4.0

pt

next

pt

next /

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 2 of 8

Question 1. (cont.) (a) (15 points) The distance of a point (x,y) from the origin is

calculated as sqrt(x*x+y*y). Implement the function max_distance below so it

calculates the distance from the origin of each point in the list and returns the largest

distance found. If the list is empty, the maximum distance returned should be 0.0.

Restriction: for full credit your function must use an appropriate loop to traverse the list

and may not use recursion or any additional functions besides sqrt.

Example: if the list contains the points (1, 2) and (3, 4), the max distance returned should

be 5.0 (= sqrt(3*3+4*4)).

#include <math.h> // for sqrt

#include <stdlib.h> // for NULL

// return max distance from origin of any point in the list

// (return 0.0 if the list is empty)

double max_distance(Ptnode * list) {

 double max = 0.0;

 Ptnode * p = list;

 while (p != NULL) {

 double dist = sqrt(p->pt->x * p->pt->x +

 p->pt->y * p->pt->y);

 if (dist > max) {

 max = dist;

 }

 p = p->next;

 }

 return max;

}

Notes: This is one possible solution; there are obviously many others and as long as

the code was correct it received full credit. Common variations were using a for

loop to traverse the list and using a temporary variable to hold the value p->pt

(although given a reasonable optimizing compiler, the generated code would likely

be just as efficient either way).

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 3 of 8

Question 1. (cont.) (b) (15 points) Complete the definition of function free_list

below so that it frees (returns to the heap) all of the data belonging to the list that is its

argument. After freeing the list nodes and points, the function should set the list pointer

supplied as its argument to NULL.

Restriction: as with part (a), for full credit your function must use an appropriate loop to

traverse the list and may not use recursion or any additional functions besides free.

#include <stdlib.h> // for free, NULL

// free list and contents, then set *list to NULL

void free_list(Ptnode ** list) {

 Ptnode * p = *list;

 Ptnode * tmp;

 while (p != NULL) {

 tmp = p;

 p = p->next;

 free(tmp->pt);

 free(tmp);

 }

 *list = NULL;

}

Notes: There are also other possible solutions here too, but it’s trickier than in the

previous problem. It’s important to be careful not to reference the value of a

pointer after freeing the associated data. In particular, a for loop that executes

p=p->next in the increment step after freeing node p is not correct.

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 4 of 8

Question 1. (cont.) (14 points) One of the summer interns who has not taken CSE333

was asked to write a function to add the value of a new Point to the front of a list.

Alas, the code has lots of problems. Indicate on the code below the changes needed so it

will work exactly as specified. You may not change the specification of the function, the

parameters, or the return type. You may add, remove, rearrange, or alter statements in

the body of the function as needed.

// Add a new Point to the front of the list lst, with the

// new point’s (x,y) values taken from parameter pt.

// Update lst to point to the new node added at the front.

// Return 1 if successful and 0 if not.

int push_front(Point pt, Ptnode ** lst) {

 // Corrections and comments in green bold type.

 // sizeof should be the size of the struct, not a pointer

 Ptnode * node = (Ptnode*)malloc(sizeof(Ptnode *));

 Point * npt = (Point*)malloc(sizeof(Point *));

 // need to check malloc failure here before using ptrs

 *npt = pt; // need to copy pt x,y values

 node->pt = &pt; npt; // need to use allocated Point

 node->next = *lst; // need *lst not lst, next 2 lines

 *lst = node;

 if (npt == NULL || node == NULL) {

 return 0; // probably should also free allocated data

 // if one of the allocations succeeded, but

 // we did not deduct points if that was

 // missed

 }

 return lst; 1; // wrong return value

}

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 5 of 8

Question 2. (20 points) Yet another ghastly C program. As is traditional, it does

compile and execute with no warnings or errors:

void modifyPtr(int *ptr, int **dblPtr) {

 int *q = ptr;

 *ptr = 5;

 ptr++;

 *ptr = 6;

 *(q + 2) = 7;

 *((*dblPtr) - 1) = 8;

 // -->HERE<-- //

}

int main(int argc, char **argv) {

 int arr[4] = {1, 2, 3, 4};

 int *p = arr + 1;

 modifyPtr(&(arr[0]), &p);

 printf("%d %d %d %d %d\n",

 arr[0], arr[1], arr[2], arr[3], *p);

 return 0;

}

(a) Draw a boxes ‘n arrows diagram showing state of memory when control reaches the

comment containing -->HERE<--, right before executing the return statement in

function modifyPtr. Your diagram should have two boxes showing the stack frames

for functions main and modifyPtr. The stack frames should include values of integer

variables and an arrow from each pointer to the location that it references. Then answer

part (b) at the bottom of the page.

 main modifyPtr

(b) What output does this program produce when it is executed?

 8 6 7 4 6

arr 0 1 5 8

 1 2 6

 2 3 7

 3 4

 p

 ptr

dblptr

 q

Note: arr is a local

variable in main, not

a pointer to an array

allocated on the heap

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 6 of 8

Question 3. (15 points) Make and program building. We have a program that consists

of a header file f.h, an implementation file f.c, and a main program main.c.

Normally we could use the following Makefile to build the program mumble from

these source files:

mumble: main.o f.o

 gcc -o mumble main.o f.o

 ld mumble main.o f.o

main.o: main.c f.h

 gcc -c -o main.o main.c

 cpp main.i main.c

 cc1 main.o main.i

f.o: f.c f.h

 gcc -c -o f.o f.c

 cpp f.i f.c

 cc1 f.o f.i

Note: another solution would be to add additional rules to produce the .i files

separately and compile them in a different step to produce the .o files.

Unfortunately we need to build this program on a new experimental system that does not

yet have a gcc command(!). Fortunately, it does have the three programs that gcc runs

behind the scenes to build a program: the preprocessor cpp, the compiler itself cc1, and

the loader ld. These commands work as follows:

cpp outfile infile – preprocess the program read from infile (say f.c) and write the

preprocessed results to outfile (by convention named f.i if the input file is f.c).

cc1 outfile infile – compile the already-preprocessed file infile (say f.i) and write the

compiled code to the object file outfile (a .o file, for example f.o)

ld outfile infiles… – read the one or more .o files listed as infiles and write an

executable file named outfile (mumble in our example above).

For this problem, show the changes that would be needed in the above Makefile so it

would build the program as before, but using cpp, cc1, and ld instead of gcc. You

can add or delete Makefile rules and Linux commands as needed. The resulting

Makefile should only recompile/preprocess/load files when necessary, as is the case

with the original one. Note that cpp and cc1 only preprocess or compile a single file at

a time, so you can’t, for instance, preprocess all of the .c files with a single command.

Also (if it helps), remember that a single Makefile rule can have more than one

command on successive lines to bring a file up to date.

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 7 of 8

Question 4. (20 points) In one of the exercises we implemented a C++ class Vector

that represented 3-D points and supplied various operations on them. A Vector had the

following representation:

class Vector {

 ...

private:

 double x_, y_, z_; // x, y, and z magnitudes of Vector

};

The operations provided included constructors (Vector(), Vector(x,y,z) and

copy constructor); assignment; addition and subtraction, which produced new Vector

values; scalar and dot-product multiplication; and stream output.

For this problem, give the declaration and implementation of a new operator+= for

Vectors. If u is the Vector (a,b,c) and v is the Vector (i,j,k), then u+=v should

modify vector u so it has the value (a+i,b+j,c+k). Note that += is almost the same as

regular assignment, except it computes a new value for its left operand instead of copying

the right operand without changes. Self-updates like u+=u, and chained updates like

u+=v+=w should also work properly.

(a) (6 points) Give the correct declaration (function prototype) of operator+= that

should be added to class Vector in the header file Vector.h. (This is only one line)

 Vector &operator+=(const Vector &other);

(b) (14 points) Give the full implementation of operator+= that should be added to

file Vector.cc.

 Vector &Vector::operator+=(const Vector &other) {

 x_ += other.x_;

 y_ += other.y_;

 z_ += other.z_;

 return *this;

 }

 CSE 333 Midterm Exam Sample Solution 7/29/13

 Page 8 of 8

Question 5. (1 point) The best reason to take CSE 333 during the summer is (circle the

letter of the best answer; all thoughtful, honest answers get full credit):

(a) A 9:40 class makes me wake up in the morning instead of sleeping till mid-afternoon.

(b) Hacking is much more fun than hiking.

(c) Next year I’ll get that Google internship after taking this class!

(d) I’d rather be in an air-conditioned, dark basement room instead of out in the bright,

hot sunlight.

(e) Learning C is better than sitting on the shore by the sea.

(f) I get to finally figure out what all the funny symbols mean (*&::!->).

(g) gdb is a better video game than anything else I’ve got.

(h) Gotta get it out of the way eventually, so why not now?

(i) Best reason? Can’t think of one, but please give me my free point anyway.

(j) I do have a good reason, but I’d rather not say. Please give me my free point.

(k) You didn’t include my reason, it’s __

All answers received 1 point.

