
CSE 333 – SECTION 8
Threads

Threads

• Sequential execution of a program.

• Contained within a process.

• Multiple threads can exist within the same process.

• Every process starts with one thread of execution, can spawn

more.

• Threads in a single process share one address space

• Instructions (code)

• Static (global) data

• Dynamic (heap) data

• Environment variables, open files, sockets, etc.

POSIX threads (Pthreads)

• The POSIX standard provides APIs for creating and

manipulating threads.

• Part of the standard C/C++ libraries, declared in pthread.h

Core pthread functions

• pthread_create(thread, attr, start_routine, arg)

• pthread_exit(status)

• pthread_join(thread, status)

• pthread_cancel (thread)

pthread_create

#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

• pthread_create creates a new thread and calls start_routine with arg as

its parameter.

• pthread_create arguments:

• thread: A unique identifier for the new thread.

• attr: An attribute object that may be used to set thread attributes. Use NULL for the

default values.

• start_routine: The C routine that the thread will execute once it is created.

• arg: A single argument that may be passed to start_routine. It must be passed by

reference as a pointer cast of type void. NULL may be used if no argument is to be

passed.

• Compile and link with –pthread.

Terminating Threads

• There are several ways in which a thread may be

terminated:

• The thread returns normally from its starting routine; Its work is

done.

• The thread makes a call to the pthread_exit subroutine -

whether its work is done or not.

• The thread is canceled by another thread via the
pthread_cancel routine.

• The entire process is terminated due to making a call to either the
exec() or exit().

• If main()finishes first, without calling pthread_exit explicitly

itself.

pthread_exit

void pthread_exit(void *retval);

• Allows the user to terminate a thread and to specify an

optional termination status parameter, retval.

• In subroutines that execute to completion normally, you

can often dispense with calling pthread_exit().

• Calling pthread_exit() from main():

• If main() finishes before the threads it spawned, and does not

call pthread_exit() explicitly, all the threads it created will terminate.

• To allow other threads to continue execution, the main thread

should terminate by calling pthread_exit() rather than exit().

pthread_join

int pthread_join(pthread_t thread, void **retval);

• Synchronization between threads.

• pthread_join blocks the calling thread until the specified thread

terminates and then the calling thread joins the terminated thread.

• Only threads that are created as joinable can be joined; a thread
created as detached can never be joined. (Refer pthread_create)

• The target thread's termination return status can be obtained if it was

specified in the target thread's call to pthread_exit().

 Demo: pthread_demo.c

mutex

• pthread_mutex_init(mutex,attr)

• pthread_mutex_lock(mutex)

• pthread_mutex_unlock(mutex)

• Pthread_mutex_destroy(mutex)

Section exercise (not to be turned in)

• Create a program that spawns two or three different

threads, each of which prints a numeric sequence.

Examples:

• First n odd numbers

• First n factorials

• First n primes

• Use pthread.cc for ideas, but the structure might not be

the same.

• Can you do something in the threads (maybe sleep()) so

that different runs of the program don’t always produce

the same output?

