
CSE 333 – SECTION 4
References, const and classes

HW2
• Online for a week now.
• Due on Thursday, July 24th by 11pm.
•  Take a look at it soon. Start early.
•  File crawler, Indexer and a search engine.
• HW1 grades will be out tonight.

Common HW1 errors
• Handle errors (malloc, LLMakeIterator,

RemoveFromHashTable).
• Using void* instead of the appropriate type.
• Helper Functions. (!!!)
• Style issues – clint.py should return clean.
• Comments.

This or that?
• Consider the following code:
Pointers: References:
int i; int i;
int *pi = &i; int &ri = i;

In both cases,

The difference lies in how they are used in expressions:
 *pi = 4; ri = 4;

Pointers and References
• Once a reference is created, it cannot be later made to

reference another object.
•  Compare to pointers, which are often reassigned.

• References cannot be null, whereas pointers can.
• References can never be uninitialized. It is also

impossible to reinitialize a reference.

C++ const declaration
• As a declaration specifier, const is a type specifier that

makes objects unmodifiable.
 const int m = 255;

• Reference to constant integer:
 int n = 100;
 const int &ri = n; //ri becomes read only

When to use?
•  Function parameter types and return types and functions

that declare overloaded operators.
• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from
one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its
lifetime.

• Style Guide Tip:
•  use const reference parameters to pass input
•  use pointers to pass output parameters
•  input parameters first, then output parameters last

C++ Classes
/* Note: This code is unfinished! Beware! */
class Point {

public:
 Point(const int x, const int y); // constructor
 int get_x() { return x_; } // inline member function

 int get_y() { return y_; } // inline member function

 double distance(const Point &p); // member function

 void setLocation(const int x, const int y); //member function

private:
 int x_; // data member
 int y_; // data member

}; // class Point

Section Exercise
• Define a class Rectangle whose instance variables are a

pair of Point objects (upper left, lower right).
•  Include at least one constructor. Make sure you get const

right in the right places.
• Methods:

•  getul(), getlr() - returns upper and lower points.
•  cornerPoints() – to obtain the corner points.
•  area() - returns the Rectangle's area.
•  contains(Point &p) - returns true or false depending on whether

point p is inside the rectangle.

•  The C++ Primer text and cplusplus.com
contain good reference material.

