
CSE 333 – SECTION 3
POSIX I/O Functions

Basic File Operations
• Open the file
• Read from the file
• Write to the file
• Close the file / free up resources

System I/O Calls
int open(char* filename, int flags, int mode);

Returns an integer which is the file descriptor.
Returns -1 if there is a failure.

filename: A string representing the name of the file.
flags: An integer code describing the access.

 O_RDONLY -- opens file for read only
 O_WRONLY – opens file for write only
 O_RDWR – opens file for reading and writing
 O_APPEND --- opens the file for appending
 O_CREAT -- creates the file if it does not exist
 O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.

[man 2 open]

System I/O Calls
ssize_t read(int fd, char *buffer, size_t bytes);
ssize_t write(int fd, char *buffer, size_t bytes);

fd: file descriptor.
buffer: address of a memory area into which the data is read.
bytes: the maximum amount of data to read from the stream.
The return value is the actual amount of data read from the file.

int close(int fd);
Returns 0 on success, -1 on failure.

[man 2 read]
[man 2 write]

[man 2 close]

Errors
• When an error occurs, the error number is stored in

“errno”, which is defined under errno.h
• View/Print details of the error using perror() and errno.
• POSIX functions have a variety of error codes to

represent different errors.
• Some common error conditions:

•  EBADF - fd is not a valid file descriptor or is not open for reading.
•  EFAULT - buf is outside your accessible address space.
•  EINTR - The call was interrupted by a signal before any data was

read.
•  EISDIR - fd refers to a directory.

[man 3 errno]
[man 3 perror]

Why learn these functions?
•  They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.
• More explicit control since read and write functions are

system calls and you can directly access system
resources.

•  There is no standard higher level API for network and
other I/O devices.

STDIO vs. POSIX Functions
• User mode vs. Kernel mode.
• STDIO library functions – fopen, fread, fwrite, fclose, etc.

use FILE* pointers.
• POSIX functions – open, read, write, close, etc. use

integer file descriptors.
•  Think about levels of abstraction

Standard I/O Calls
• Read the man pages!

•  [man 3 stdio] for a full list of functions declared in <stdio.h>

•  The most important (for you):
•  fopen
•  fclose
•  fread
•  fwrite
•  fseek

•  Be sure to check out some of the others though! You might just find
something interesting and/or useful!

Directories
• Accessing directories:

•  Open a directory
•  Iterate through its contents
•  Close the directory

• Opening a directory:
 DIR* opendir(char* dir_name);

•  Opens a directory given by dir_name and provides a pointer DIR* to
access files within the directory.

• Don’t forget to close the directory when done:
 int closedir(DIR* dirp);

[man 0P dirent.h]
[man 3 opendir]

[man 3 closedir]

Directories
•  Reading a directory file.
struct dirent *readdir(DIR *dirp);
.
•  returns NULL on reaching the end of the directory stream or
•  if an error occurred
struct dirent {
 int_t d_ino; /* i-node number for the dir entry */
 u_short d_reclen; /* length of this record */
 off_t d_off; /* offset to the next dirent*/
 unsigned char d_type; /* type of file; not supported by all
 file system types */
 char d_name[NAME_MAX+1] ; /* directory entry name */
};

[man 3 readdir] or
[man 3 readdir_r] but not
[man readdir]

Directories
•  Reading a directory file.
int readdir_r(DIR *dirp, struct dirent *entry,
 struct dirent **result);
•  returns 0 on success.
•  A NULL pointer is returned in *result when the end of the directory is reached.

struct dirent {
 u_long d_ino; /* i-node number for the dir entry */
 u_short d_reclen; /* length of this record */
 off_t d_off; /* offset to the next dirent*/
 unsigned char d_type; /* type of file; not supported by all
 file system types */
 char d_name[NAME_MAX+1] ; /* directory entry name */
};

[man 3 readdir] or
[man 3 readdir_r] but not
[man readdir]

Section Exercise
•  Find a partner if you wish.
• Write a C program that does the following:

•  Given a command line argument, if it is an ordinary file, print its
contents to stdout.

•  If not, or some other error occurs, print an informative error
message using perror().

•  Similar to cat.
•  You must use the POSIX functions to open, close, read and write.

