
CSE333 lec 7 syscall fio // 07-09-14 // Perkins

CSE 333
Lecture 7 - system calls, intro to file I/O

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Administrivia

New exercise posted Mon., due before class Wed.

- Then no more exercises due this week

Lectures and sections this week: I/O and system calls

- Key material for next part of the project (& interesting by itself!)

- Sections Thur.: POSIX I/O and reading directories

‣ New exercise after that, due before class Monday

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Administrivia

HW1 due Thursday night

- Watch that hashtable.c doesn’t violate the modularity of ll.h

- Watch for pointers to local (stack-allocated) variables - don’t store them in
persistent data structures

- What do you do if one of the tests fails and it’s not obvious why?

- Suggestion from past graders: clean up the “to do” comments, but leave
the “step 1”, “step 2” markers so they can find things quickly

- Extra credit: if you add unit tests, put them in a new file and you adjusted
the makefile accordingly.

- Quiz: what is the late day policy?

- Quiz: what happens if you re-submit the project after first turnin?

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Administrivia - Code Quality
Code quality (“style”) really matters - and not just in classes

Rule #0: reader’s time is much more important than writer’s

- Good comments are essential, clarity/understandibility is critical

Rule #1: match existing code

Rule #2: use tools. examples:

- Compiler warnings: just fix them!

- clint style warnings: fix most of them; be sure you understand anything you
don’t fix and can justify it (ok to have a type as malloc parameter, not ok to
have spaces instead of tabs or magic numbers instead of #define, etc. ...)

- valgrind warnings: fix all of them unless you know why it’s not an error
(example: reading/printing uninitialized bytes in a debugging tool)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Remember this picture?

hardware

operating system
HW/SW interface
(x86 + devices)

CPU memory storage network
GPU clock audio radio peripherals

OS / app interface
(system calls)

C standard library
(glibc)

C application

C++ STL / boost /
standard library

C++ application

JRE

Java
application

brief diversion

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

What’s an OS?

Software that:

1. directly interacts with the hardware

‣ OS is trusted to do so; user-level programs are not

‣ OS must be ported to new HW; user-level programs are portable

2. manages (allocates, schedules, protects) hardware resources

‣ decides which programs can access which files, memory locations,
pixels on the screen, etc., and when

3. abstracts away messy hardware devices

‣ provides high-level, convenient, portable abstractions

• e.g., files vs. disk blocks

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as an abstraction provider

The OS is the “layer below”

- a module that your program can call (with system calls)

- provides a powerful API (the OS API - POSIX, Windows, ...)

a process running
your program

fil
e

sy
st

em

ne
tw

or
k

st
ac

k

vi
rtu

al
 m

em
or

y

pr
oc

es
s

m
gm

t

• •
 •

et
c.

 •
• •

OS
API

OS

file system
- open(), read(), write(), close(), ...

network stack
- connect(), listen(), read(), write (), ...

virtual memory
- brk(), shm_open(), ...

process management
- fork(), wait(), nice(), ...

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system
OS isolates processes from each other

- but permits controlled sharing between them

‣ through shared name spaces (e.g., FS names)

OS isolates itself from processes

- and therefore, must prevent processes from
accessing the hardware directly

OS is allowed to access the hardware

- user-level processes run with the CPU in
unprivileged mode

- when the OS is running, the CPU is set to
privileged mode

- user-level processes invoke a system call to
safely enter the OS

pr
oc

es
s

A
(u

nt
ru

st
ed

)

OS
(trusted)

pr
oc

es
s

B
(u

nt
ru

st
ed

)

pr
oc

es
s

C
(u

nt
ru

st
ed

)

pr
oc

es
s

D
(tr

us
te

d)

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

pr
oc

es
s

A
(u

nt
ru

st
ed

)

OS
(trusted)

pr
oc

es
s

B
(u

nt
ru

st
ed

)

pr
oc

es
s

C
(u

nt
ru

st
ed

)

pr
oc

es
s

D
(tr

us
te

d)

HW (trusted)

a CPU (thread of execution)
is running user-level code in
process A; that CPU is set

to unprivileged mode

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

pr
oc

es
s

A
(u

nt
ru

st
ed

)

OS
(trusted)

pr
oc

es
s

B
(u

nt
ru

st
ed

)

pr
oc

es
s

C
(u

nt
ru

st
ed

)

pr
oc

es
s

D
(tr

us
te

d)

HW (trusted)

code in process A invokes a
system call; the hardware then

sets the CPU to privileged
mode and traps into the OS,

which invokes the appropriate
system call handler

sy
st

em
 c

al
l

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

pr
oc

es
s

A
(u

nt
ru

st
ed

)

OS
(trusted)

pr
oc

es
s

B
(u

nt
ru

st
ed

)

pr
oc

es
s

C
(u

nt
ru

st
ed

)

pr
oc

es
s

D
(tr

us
te

d)

HW (trusted)

because the CPU executing
the thread that’s in the OS is
in privileged mode, it is able
to use privileged instructions

that interact directly with
hardware devices like disks

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

pr
oc

es
s

A
(u

nt
ru

st
ed

)

OS
(trusted)

pr
oc

es
s

B
(u

nt
ru

st
ed

)

pr
oc

es
s

C
(u

nt
ru

st
ed

)

pr
oc

es
s

D
(tr

us
te

d)

HW (trusted)

once the OS has finished servicing
the system call (which might involve
long waits as it interacts with HW) it:

(a) sets the CPU back to unprivileged
mode, and

(b) returns out of the system call back
to the user-level code in process A

sy
st

em
 c

al
l r

et
ur

n

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

pr
oc

es
s

A
(u

nt
ru

st
ed

)

OS
(trusted)

pr
oc

es
s

B
(u

nt
ru

st
ed

)

pr
oc

es
s

C
(u

nt
ru

st
ed

)

pr
oc

es
s

D
(tr

us
te

d)

HW (trusted)

the process continues
executing whatever code

that is next after the
system call invocation

Useful reference: Computer
Systems: A Programmer’s

Perspective (CSE351 book)
secs. 8.1-8.3

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Details on x86 / Linux

A more accurate picture:

- consider a typical Linux process

- its thread of execution can be
several places

‣ in your program’s code

‣ in glibc, a shared library
containing the C standard library,
POSIX support, and more

‣ in the Linux architecture-
independent code

‣ in Linux x86-32/x86-64 code

 your
 program

glibc

C standard
library POSIX

architecture-dependent code

architecture-independent code

Linux kernel

Linux
system calls

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux
Some routines your program
invokes may be entirely
handled by glibc

- without involving the kernel

‣ e.g., strcmp() from stdio.h

- ∃ some initial overhead when
invoking functions in
dynamically linked libraries

- but, after symbols are resolved,
invoking glibc routines is nearly
as fast as a function call within
your program itself

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux
Some routines may be
handled by glibc, but they in
turn invoke Linux system calls

- e.g., POSIX wrappers around
Linux syscalls

‣ POSIX readdir() invokes the
underlying Linux readdir()

- e.g., C stdio functions that read
and write from files

‣ fopen(), fclose(), fprintf() invoke
underlying Linux open(), read(),
write(), close(), etc.

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

Your program can choose to
directly invoke Linux system
calls as well

- nothing forces you to link with
glibc and use it

- but, relying on directly invoked
Linux system calls may make
your program less portable
across UNIX varieties

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

Let’s walk through how a Linux
system call actually works

- we’ll assume 32-bit x86 using
the modern SYSENTER /
SYSEXIT x86 instructions

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

Remember our
process address
space picture

- let’s add some
details

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP

SP

CPUunpriv

process is executing
your program code

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP

SP

CPUunpriv

process calls into a glibc
function (e.g., fopen)

‣ we’ll ignore the messy
details of loading / linking
shared libraries

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.soIP

SP

CPUunpriv

glibc begins the process
of invoking a Linux
system call

‣ glibc’s fopen() likely
invokes Linux’s open()
system call

‣ puts the system call #
and arguments into
registers

‣ uses the call x86
instruction to call into the
routine __kernel_vsyscall
located in linux-gate.so

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.soIP

SP

CPUunpriv

linux-gate.so is a vdso

‣ a virtual dynamically
linked shared object

‣ is a kernel-provided
shared library, i.e., is not
associated with a .so file,
but rather is conjured up
by the kernel and
plunked into a process’s
address space

‣ provides the intricate
machine code needed to
trigger a system call

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP
SP

CPUpriv

linux-gate.so eventually
invokes the SYSENTER
x86 instruction

‣ SYSENTER is x86’s “fast
system call” instruction

‣ it has several side-effects

- causes the CPU to
raise its privilege level

- traps into the Linux
kernel by changing the
SP, IP to a previously
determined location

- changes some
segmentation related
registers (see cse451)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP
SP

CPUpriv

The kernel begins
executing code at the
SYSENTER entry point

‣ is in the architecture-
dependent part of Linux

‣ it’s job is to:

- look up the system call
number in a system
call dispatch table

- call into the address
stored in that table
entry; this is Linux’s
system call handler

- for open, the handler is
named sys_open, and
is system call #5

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP
SP

CPUpriv

The system call handler
executes

‣ what it does is system-
call specific, of course

‣ it may take a long time
to execute, especially if it
has to interact with
hardware

- Linux may choose to
context switch the
CPU to a different
runnable process

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP
SP

CPUpriv

Eventually, the system
call handler finishes

‣ returns back to the
system call entry point

- places the system call’s
return value in the
appropriate register

- calls SYSEXIT to return
to the user-level code

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP

SP

CPUunpriv

SYSEXIT transitions the
processor back to user-
mode code

‣ has several side-effects

- restores the IP, SP to
user-land values

- sets the CPU back to
unprivileged mode

- changes some
segmentation related
registers (see cse451)

‣ returns the processor
back to glibc

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

 your
 program

glibc

Details on x86 / Linux

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

0x00000000

0xFFFFFFFF

 Linux
 kernel

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

kernel stack

linux-gate.so

IP

SP

CPUunpriv

glibc continues to
execute

‣ might execute more
system calls

‣ eventually returns back
to your program code

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

If you’re curious

Download the Linux kernel source code

- available from http://www.kernel.org/

Take a look at:

- arch/x86/kernel/syscall_table_32.S [system call table]

‣ arch/x86/syscalls/syscall_32.tbl in more recent versions

- arch/x86/kernel/entry_32.S [SYSENTER entry point and more]

- arch/x86/vdso/vdso32/sysenter.S [user-land vdso]

And: http://articles.manugarg.com/systemcallinlinux2_6.html

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Also...

man, section 2: Linux system calls

- man 2 intro

- man 2 syscalls (or look online here)

man, section 3: glibc / libc library functions

- man 3 intro (or look online here)

The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

- If you want a copy: go to the book web site (man7.org/tlpl),
get discount code there, then order from the publisher

‣ Book + ebook for cost of printed copy from Amazon

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

strace
A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace ls 2>&1 | less
[005c7424] execve("/bin/ls", ["ls"], [/* 47 vars */]) = 0
[003caffd] brk(0) = 0x9376000
[003cc3c3] mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0xb7800000
[003cc2c1] access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
[003cc184] open("/etc/ld.so.cache", O_RDONLY) = 3
[003cc14e] fstat64(3, {st_mode=S_IFREG|0644, st_size=92504, ...}) = 0
[003cc3c3] mmap2(NULL, 92504, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb77e9000
[003cc1bd] close(3) = 0
[003cc184] open("/lib/libselinux.so.1", O_RDONLY) = 3
[003cc204] read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\"..., 512) = 512
[003cc14e] fstat64(3, {st_mode=S_IFREG|0755, st_size=122420, ...}) = 0
[003cc3c3] mmap2(0x6d6000, 125948, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x6d6000
[003cc3c3] mmap2(0x6f3000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP
_DENYWRITE, 3, 0x1c) = 0x6f3000
[003cc1bd] close(3) = 0
[003cc184] open("/lib/librt.so.1", O_RDONLY) = 3
[003cc204] read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200X[\0004\0\0\0"...,
512) = 512
... etc.

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

strace
A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace ls 2>&1 | less
...
[00110424] open(".", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY|O_CLOEXEC) = 3
[00110424] fcntl64(3, F_GETFD) = 0x1 (flags FD_CLOEXEC)
[00110424] getdents64(3, /* 6 entries */, 32768) = 184
[00110424] getdents64(3, /* 0 entries */, 32768) = 0
[00110424] close(3) = 0
[00110424] fstat64(1, {st_mode=S_IFIFO|0600, st_size=0, ...}) = 0
[00110424] mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0xb77ff000
[00110424] write(1, "bomstrip.py\nmountlaptop.sh\nteste"..., 43
bomstrip.py
mountlaptop.sh
tester
tester.c
) = 43
[00110424] close(1) = 0
[00110424] munmap(0xb77ff000, 4096) = 0
[00110424] close(2) = 0
[00110424] exit_group(0) = ?

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Let’s do some file I/O...

We’ll start by using C’s standard library

- these functions are implemented in glibc on Linux

- they are implemented using Linux system calls

C’s stdio defines the notion of a stream

- a stream is a way of reading or writing a sequence of
characters from/to a device

‣ a stream can be either text or binary; Linux does not distinguish

‣ a stream is buffered by default; libc reads ahead of you

‣ three streams are provided by default: stdin, stdout, stderr

‣ you can open additional streams to read/write to files

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Using C streams
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define READBUFSIZE 128
int main(int argc, char **argv) {
 FILE *f;
 char readbuf[READBUFSIZE];
 size_t readlen;

 if (argc != 2) {
 fprintf(stderr, "usage: ./fread_example filename\n");
 return EXIT_FAILURE; // defined in stdlib.h
 }

 // Open, read, and print the file
 f = fopen(argv[1], "rb"); // "rb" --> read, binary mode
 if (f == NULL) {
 fprintf(stderr, "%s -- ", argv[1]);
 perror("fopen failed -- ");
 return EXIT_FAILURE;
 }

 // Read from the file, write to stdout.
 while ((readlen = fread(readbuf, 1, READBUFSIZE, f)) > 0)
 fwrite(readbuf, 1, readlen, stdout);
 fclose(f);
 return EXIT_SUCCESS; // defined in stdlib.h
}

stderr is a stream for
printing error output
to a console

fopen opens a
stream to read or
write a file

perror writes a string
describing the last
error to stderr

stdout is for printing
non-error output to
the console

printf(...) is equivalent
to fprintf(stdout, ...)fread_example.c

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Writing is easy too

see cp_example.c

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

A gotcha

By default, stdio turns on buffering for streams

- data written by fwrite() is copied into a buffer allocated by
stdio inside your process’s address space

- at some point, the buffer will be drained into the destination

‣ when you call fflush() on the stream

‣ when the buffer size is exceeded (often 1024 or 4096 bytes)

‣ for stdout to a console, when a newline is written (“line buffered”)

‣ when you call fclose() on the stream

‣ when your process exits gracefully (exit() or return from main())

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Why is this a gotcha?

What happens if...

- your computer loses power before the buffer is flushed?

- your program assumes data is written to a file, and it signals
another program to read it?

What are the performance implications?

- data is copied into the stdio buffer

‣ consumes CPU cycles and memory bandwidth

‣ can potentially slow down high performance applications, like a web
server or database (“zero copy”)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

What to do about it

Turn off buffering with setbuf()

- this, too, may cause performance problems

‣ e.g., if your program does many small fwrite()’s, each of which will
now trigger a system call into the Linux kernel

Use a different set of system calls

- POSIX provides open(), read(), write(), close(), and others

- no buffering is done at the user level

but...what about the layers below?
‣ the OS caches disk reads and writes in the FS buffer cache

‣ disk controllers have caches too!

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Exercise 1

Write a program that:

- uses argc/argv to receive the name of a text file

- reads the contents of the file a line at a time

- parses each line, converting text into a uint32_t

- builds an array of the parsed uint32_t’s

- sorts the array

- prints the sorted array to stdout

‣ hints: use “man” to read about getline, sscanf, realloc, and qsort

bash$ cat in.txt
1213
3231
000005
52
bash$ ex1 in.txt
5
52
1213
3231
bash$

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Exercise 2

Write a program that:

- loops forever; in each loop, it:

‣ prompts the user to input a filename

‣ reads from stdin to receive a filename

‣ opens and reads the file, and prints its
contents to stdout, in the format
shown on the right

- hints:

‣ use “man” to read about fgets

‣ or if you’re more courageous, try “man
3 readline” to learn about libreadline.a,
and google to learn how to link to it

0000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5
0000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53
0000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d
0000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00
0000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09
0000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c
0000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68
0000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00
0000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88
0000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a
00000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b
00000b0 c8 a0 88 03 8e 8e 80 8c 15 51 2c 0c 8a 0a d8 07
00000c0 e4 21 a2 8e 83 a3 88 8a ca fb e1 7b a3 6b d6 bc
...etc.

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

See you on Friday!

