CoE 333

Lecture 7 - system calls, intro to file I/O

Hal Perkins
Department of Computer Science & Engineering
University of Washington

S
S

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Administrivia

New exercise posted Mon., due before class Wed.

- Then no more exercises due this week

Lectures and sections this week: I/O and system calls

- Key material for next part of the project (& interesting by itself!)

- Sections Thur.: POSIX /0O and reading directories

» New exercise after that, due before class Monday

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Administrivia

HW1 due Thursday night
Watch that hashtable.c doesn’t violate the modularity of ll.h

Watch for pointers to local (stack-allocated) variables - don’t store them in
persistent data structures

What do you do if one of the tests fails and it’s not obvious why?

Suggestion from past graders: clean up the “to do” comments, but leave

b 11

the “step 17, “step 2” markers so they can find things quickly

Extra credit: if you add unit tests, put them in a new file and you adjusted
the makefile accordingly.

Quiz: what is the late day policy?

Quiz: what happens if you re-subbmit the project after first turnin®?

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Administrivia - Code Quality

Code quality (“style”) really matters - and not just in classes
Rule #0: reader’s time is much more important than writer’'s
- Good comments are essential, clarity/understandibility is critical
Rule #1: match existing code

Rule #2: use tools. examples:

- Compiler warnings: just fix them!

- clint style warnings: fix most of them; be sure you understand anything you
don’t fix and can justify it (ok to have a type as malloc parameter, not ok to
have spaces instead of tabs or magic numbers instead of #define, etc. ...)

- valgrind warnings: fix all of them unless you know why it’'s not an error
(example: reading/printing uninitialized bytes in a debugging tool)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Remember this picture?

brief diversion [

\ application
C standard library C++ STL / boost/

standard library
OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

What’s an OS?

Software that:

1. directly interacts with the hardware

» OS is trusted to do so; user-level programs are not

» OS must be ported to new HW; user-level programs are portable
2. manages (allocates, schedules, protects) hardware resources

» decides which programs can access which files, memory locations,
pixels on the screen, etc., and when

3. abstracts away messy hardware devices

» provides high-level, convenient, portable abstractions

* e.g., files vs. disk blocks

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as an abstraction provider

The OS is the “layer below”
- a module that your program can call (with system calls)

- provides a powerful API (the OS API - POSIX, Windows, ...)

a process running file system
your program - open(), read(), write(), close(), ...
network stack
- connect(), listen(), read(), write (), ...
virtual memory
- brk(), shm_open(), ...
process management
- fork(), wait(), nice(), ...

virtual memory
process mgmt

file system
network stack

CSE333 lec 7 syscall fio // 07-09-14 // Perki

OS as a protection system

OS isolates processes from each other

- but permits controlled sharing between them
» through shared name spaces (e.g., FS names)

OS isolates itself from processes

- and therefore, must prevent processes from
accessing the hardware directly

OS is allowed to access the hardware

- user-level processes run with the CPU in
unprivileged mode

when the OS is running, the CPU is set to
privileged mode

user-level processes invoke a system call to
safely enter the OS

process A
(untrusted)

process B
(untrusted)
process C
(untrusted)
process D
(trusted)

OS
(trusted)

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

A

(untrusted)
process B
(untrusted)
process C
(untrusted)
process D
(trusted)

process

a CPU (thread of execution)
IS running user-level code iN—

vﬂﬂ

process A; that CPU is set

to unprivileged mode

OS
(trusted)

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

code in process A invokes a
system call; the hardware then
sets the CPU to privileged
mode and traps into the OS,
which invokes the appropriate
system call handler

process A
(untrusted)
process B
(untrusted)
process C
(untrusted)
process D
(trusted)

system call

4
4
.

OS
(trusted)

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

because the CPU executing
the thread that’s in the OS is
In privileged mode, it is able
to use privileged instructions
that interact directly with
hardware devices like disks

process A
(untrusted)

process B
(untrusted)
process C
(untrusted)
process D
(trusted)

.,,[U’\

OS
(trusted)

vA v v4 V4

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

once the OS has finished servicing
the system call (which might involve
long waits as it interacts with HW) it:

(a) sets the CPU back to unprivileged
mode, and

(b) returns out of the system call back
to the user-level code in process A

process A
(untrusted)

process B
(untrusted)
process C
(untrusted)
process D
(trusted)

L4
14
,
L]

system call return

OS
(trusted)

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

OS as a protection system

the process continues
executing whatever code
that is next after the
system call invocation

Useful reference: Computer

Systems: A Programmer’s

Perspective (CSE351 book)
secs. 8.1-8.3

—

A

process
(untrusted)

.A‘/U’\

process B
(untrusted)
process C
(untrusted)
process D
(trusted)

OS
(trusted)

HW (trusted)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Detalls on x86 / Linux

A more accurate picture:

- consider a typical Linux process

- |ts thread of execution can be
several places

»

»

in your program’s code

in glibc, a shared library
containing the C standard library,
POSIX support, and more

In the Linux architecture-
independent code

iN Linux x86-32/x86-64 code

your
program

+ C standard
library

glibc

*T Linux
system calls

architecture-independent code

architecture-dependent code

Linux kernel

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Detalls on x86 / Linux

Some routines your program
iInvokes may be entirely
handled by glibc

- without involving the kernel

your
program

+ C standard
library

glibc

» e.9., stremp() from stdio.h

- 3 some initial overhead when

iInvoking functions in
dynamically linked libraries

architecture-independent code

but, after symbools are resolved, R
iInvoking glibc routines is nearly
as fast as a function call within
your program itself

Linux kernel

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Detalls on x86 / Linux

Some routines may be it
handled by glibc, but they in program

turn invoke Linux system calls i

library

- e.g., POSIX wrappers around glibe [(1|1

Linux syscalls | U l

» POSIX readdir() invokes the
underlying Linux readdir()

architecture-independent code

- e.g., C stdio functions that read
and write from files

architecture-dependent code

» fopen(), fclose(), fprintf() invoke _
underlying Linux open(), read(), Linux kernel
write(), close(), etc.

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Detalls on x86 / Linux

your
program

Your program can choose to |
directly invoke Linux system : C standard

: library
calls as well i § glibc

|
- nothing forces you to link with u
glibc and use it

but, relying on directly invoked architecture-independent code
Linux system calls may make
your program less portable
across UNIX varieties

architecture-dependent code

Linux kernel

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Detalls on x86 / Linux

Let’s walk through how a Linux
system call actually works

- we'll assume 32-bit x86 using
the modern SYSENTER /
SYSEXIT x86 instructions

your
program

+ C standard

v library
i i glibc

|

architecture-independent code

architecture-dependent code

Linux kernel

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so

Linux kernel stack
kernel 1

your
program

| C standard
Remember our §it b

process address I § glibc

t

shared libraries

- let’s add some)

detalls architecture-independent code
heap (malloc/free)

space picture

read/write segment
.data, .bss architecture-dependent code

read-only segment
.text, .rodata

Linux kernel

CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so

Linux kernel stack
kernel 1

your
program

+ C standard
library

. glibc

t

shared libraries

1

heap (malloc/free)

process is executing
your program code

architecture-independent code

read/write segment
.data, .bss architecture-dependent code

read-only segment
.text, .rodata

Linux kernel

unpriv CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so

Linux kernel stack
kernel 1

your
program

+ C standard

library % POSIX

SP—> . glibc
process calls into a glibc A :

f | 9., f
gl ot IP =>»| shared libraries

» we'll ignore the messy
details of loading / linking)
shared libraries

architecture-independent code
heap (malloc/free)

read/write segment
.data, .bss architecture-dependent code

read-only segment
.text, .rodata

Linux kernel

unpriv. CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OxFFFFFFFF
P = linux-gate.so

Linux kernel stack
kernel 1

your
program

glibc begins the process
of invoking a Linux
system call

+ C standard

library % POSIX

» glibc’s fopen() likely
invokes Linux’s open() t
system call

SP —> ! glibc

shared libraries

» puts the system call #
and arguments into t

registers heap (malloc/free)

architecture-independent code

» uses the call x86 read/write segment
instruction to call into the .data, .bss architecture-dependent code
routine __kernel_vsyscall

located in linux-gate.so read-only segment Linux kernel

.text, .rodata
unpriv. CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OxFFFFFFFF
P = linux-gate.so

Linux kernel stack
linux-gate.so is a vdso kernel ¥

your
program

» a virtual dynamically
linked shared object

+ C standard

library % POSIX

» is a kernel-provided Sl) glibc

shared library, i.e., is not 0
associated with a .so file,
but rather is conjured up
by the kernel and A
plunked into a process’s
address space heap (malloc/free)

shared libraries

architecture-independent code

» provides the intricate read/write segment
machine code needed to .data, .bss architecture-dependent code
trigger a system call

read-only segment
.text, .rodata

Linux kernel

unpriv. CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OxFFFFFFFF
linux-gate.so

linux-gate.so eventually gp —»| Linux kernel stack
invokes the SYSENTER |p —» | kernel T
Xx86 instruction

your
program

: C standard
» SYSENTER is x86’s “fast . library

instruction glibc

|”

system cal

v
» it has several side-effects ?

shared libraries

1

heap (malloc/free)

- causes the CPU to
raise its privilege level

- traps into the Linux architecture-independent code

kernel by changing the

SP, IP to a previously read/write segment
determined location .data, .bss architecture-dependent code

- changes some read-only segment
segmentation related .text, .rodata

registers (see cse451) priv CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Linux kernel

0x00000000

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so
SP = Linux kernel stack

The kernel begins
executing code at the
SYSENTER entry point

your

P —» | kernel 1 program

» is in the architecture- C standard
dependent part of Linux : library
: libc
b it’s job is to: * : 9

- look up the system call shared libraries
number in a system

call dispatch table %

: architecture-independent code
- call into the address heap (malloc/free)

stored in that table :
entry; this is Linux’s read/write segment

system call handler .data, .bss

read-only segment Linux kernel
.text, .rodata

architecture-dependent code

- for open, the handler is
named sys_open, and
is system call #5

priv CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

The system call handler
executes

» what it does is system-
call specific, of course

» it may take a long time
to execute, especially if it
has to interact with
hardware

- Linux may choose to
context switch the
CPU to a different
runnable process

SP—>
P —>

OXFFFFFFFF

linux-gate.so

Linux kernel stack

kernel 1

v
t

your
program

+ C standard
library

glibc

shared libraries

1

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

architecture-independent code

architecture-dependent code

Linux kerne

priv CPU

0x00000000

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so

Linux kernel stack
kernel 1

your
program

C standard
Eventually, the system . library

call handler finishes 7 glibc

» returns back to the t
system call entry point shared libraries

- places the system call’s A

return Ve}lue in the architecture-independent code
appropriate register heap (malloc/free)

- calls SYSEXIT to return read/write segment
to the user-level code .data, .bss % architecture-dependent code

read-only segment
.text, .rodata

Linux kernel

priv CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so

Linux kernel stack our

i kernel 1 y
SYSEXIT transitions the program
processor back to user-
mode code

+ C standard
library

» has several side-effects SF = 7 glibc

% POSIX

- restores the IP, SP to 1
user-land values IP = | shared libraries

- sets the CPU back to 4

unprivileged mode architecture-independent code
heap (malloc/free)

- changes some

segmentation related read/write segment |
registers (see cse451) .data, .bss architecture-dependent code

read-only segment Linux kernel

» returns the processor
.text, .rodata

back to glibc

unpriv. CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

Details on x86 / Linux

OXFFFFFFFF

linux-gate.so

Linux kernel stack
kernel 1

your
program

+ C standard
library

; glibc
t

shared libraries

glibc continues to
execute

» might execute more
system calls 0

architecture-independent code
» eventually returns back heap (malloc/free)

to your program code

read/write segment
.data, .bss architecture-dependent code

read-only segment
.text, .rodata

Linux kernel

unpriv CPU

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

0x00000000

f you're curious

Download the Linux kernel source code

- available from http://www.kernel.org/

Take a look at:
- arch/x86/kernel/syscall_table_32.S [system call table]
» arch/x86/syscalls/syscall_32.tbl in more recent versions
- arch/x86/kernel/entry_32.S [SYSENTER entry point and more]
- arch/x86/vdso/vdso32/sysenter.S [user-land vdso]

And: http://articles.manugarg.com/systemcallinlinux? 6.html

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Also...

man, section 2: Linux system calls
- man 2 intro

- man 2 syscalls (or look online here)

man, section 3: glibc / libc library functions

- man 3 intro (or look online here)

The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

- If you want a copy: go to the book web site (man7.org/tlpl),
get discount code there, then order from the publisher

» Book + ebook for cost of printed copy from Amazon

CSE333 lec 7 syscall fio // 07-09-14 // Perki

strace

A useful Linux utility that shows the sequence of system
calls that a process makes:

-
bash$ strace ls 2>&l1 | less

[005c7424]
[003caffd]
[003cc3c3]
0xb7800000
[003cc2cl]
[003cc184]
[003cclde]
[003cc3c3]
[003cclbd]
[003ccl84]
[003cc204]
[003cclde]
[003cc3c3]
0x6d6000

[003cc3c3]

DENYWRITE, 3,

[003cclbd]
[003cc1l84]
[003cc204]
512) 512

et

execve ("/bin/ls", [/* 47 vars */])
brk (0) 0x9376000
mmap2 (NULL, 40096, PROT_READlPROT_WRITE, MAP_PRIVATEIMAP_ANONYMOUS, -1, 0)

[Illsll] e - 0

access ("/etc/ld.so.preload", R OK)
open("/etc/ld.so.cache", O _RDONLY) 3
fstat64 (3, {st_mode=S IFREG|0644, st size=92504,
mmap2 (NULL, 92504, PROT READ, MAP PRIVATE, 3, 0)
close (3) =0
open("/lib/libselinux.so.1", O RDONLY) 3

read (3, "\177ELF\1\1\1\0\0\0\0\0\0\O\O\O\3\O\3\O\1\O\O\"..., 512)
fstat64 (3, {st mode=S IFREG|0755, st size=122420, ...}) =0
mmap2 (0x6d6000, 125948, PROT READ|PROT EXEC, MAP PRIVATE|MAP DENYWRITE, 3, 0)

-1 ENOENT (No such file or directory)

Srrl=10
0xb77e9000

512

mmap2 (0x6£3000, 8192, PROT_BEADIPROT_WRITE, MAP_PRIVATEIMAP_FIXEDIMAP

Oxlc) 0x6£3000

close (3) =0

open("/lib/librt.so.1", O _RDONLY) = 3

read (3, "\177ELF\1\1\1\0\0\0\0\0\0O\0O\0O\O\3\0\3\0\1\0O\0O\O\200xX[\OOO4\O\O\O"...,

strace

A useful Linux utility that shows the sequence of system
calls that a process makes:

=
bash$ strace 1ls 2>&l | less

[00110424] open(".", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY|O_CLOEXEC) =
[00110424] fcntl64 (3, F_GETFD) = 0x1 (flags FD_CLOEXEC)

[00110424] getdents64(3, /* 6 entries */, 32768) 184

[00110424] getdents64(3, /* 0 entries */, 32768) 0]

[00110424] close(3) =0

[00110424] fstat64 (1, {st_mode=S IFIFO|0600, st size=0, ...}) =0

[00110424] mmap2 (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE|MAP ANONYMOUS, -1, 0) =
0xb77££000

[00110424] write(l, "bomstrip.py\nmountlaptop.sh\nteste"..., 43

bomstrip.py

mountlaptop.sh

tester

tester.c

) = 43

[00110424] close(1l)

[00110424] munmap (0xb77££000, 4096)
[00110424] close(2)

[00110424] exit group(0)

N

L et’s do some file I/0O...

We'll start by using C’s standard library
- these functions are implemented in glibc on Linux

- they are iImplemented using Linux system calls

C’s stdio defines the notion of a stream

- a stream is a way of reading or writing a sequence of
characters from/to a device

» a stream can be either text or binary, Linux does not distinguish
» a stream s buffered by default; libc reads ahead of you
» three streams are provided by default: stdin, stdout, stderr

» you can open additional streams to read/write to files

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Using C streams

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define READBUFSIZE 128
int main(int argc, char **argv) ({
FILE *f;
char readbuf [READBUFSIZE];
size_ t readlen;
if (argc !'= 2) {
fprintf (stderr,
return EXIT_FAILURE;

}

"usage: ./fread example filename\n") ;
// defined in stdlib.h

// Open, read, and print the file
£ fopen (argv[1l], "rb"); // "rb" --> read, binary mode
if (£ == NULL) {

fprintf (stderr, "%s -- ", argv[l]);

perror ("fopen failed -- ");

return EXIT FAILURE;

}

// Read from the file, write to stdout.

while ((readlen fread (readbuf, 1, READBUFSIZE, £f)) > 0)
fwrite (readbuf, 1, readlen, stdout);

fclose (£f) ;

return EXIT SUCCESS;

// defined in stdlib.h

fread_example.c

>

printf(...) is equivalent
to fprintf(stdouit, ...)

stderr is a stream for
printing error output

€= {5 a3 console

fopen opens a
stream to read or
<« \rite a file

perror writes a string
describing the last
error to stderr

< Stdout is for printing
non-error output to
the console

/333 lec 7 syscall fio // 07-09-14 // Perkins

Writing is easy too

see cp_example.c

A gotcha

By default, stdio turns on buffering for streams

- data written by fwrite() is copied into a buffer allocated by
stdio inside your process’s address space

- at some point, the buffer will be drained into the destination
» when you call fflush() on the stream
when the buffer size is exceeded (often 1024 or 4096 bytes)
for stdout to a console, when a newline is written (“line buffered”)
when you call fclose() on the stream

when your process exits gracefully (exit() or return from main())

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Why is this a gotcha?

What happens if...
- your computer loses power before the buffer is flushed?

- your program assumes data is written to a file, and it signals
another program to read it”?

What are the performance implications?

- data is copied into the stdio buffer
» consumes CPU cycles and memory bandwidth

» can potentially slow down high performance applications, like a web
server or database (“zero copy”)

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

What to do about It

Turn off buffering with setbuf()

- this, too, may cause performance problems

» e.9., if your program does many small fwrite()’s, each of which will
now trigger a system call into the Linux kernel

Use a different set of system calls
- POSIX provides open(), read(), write(), close(), and others
- no buffering Is done at the user level

but...what about the layers below?

» the OS caches disk reads and writes in the FS buffer cache

» disk controllers have caches too!

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Exercise T

“ i
bash$ cat in.txt

1213

Write a program that: 200005
52

bash$ exl in. txt

5
52

reads the contents of the file a line at a time e

bash$
parses each line, converting text into a uint32_t

uses argc/argyv to receive the name of a text file

builds an array of the parsed uint32_t’s
sorts the array

prints the sorted array to stdout

» hints: use “man” to read about getline, sscanf, realloc, and gsort

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

Exercise 2

Write a program that:

- loops forever; in each loop, it:

»

prompts the user to input a filename
reads from stdin to receive a filename

opens and reads the file, and prints its
contents to stdout, in the format
shown on the right

hints:

»

use “man” to read about fgets

or if you’re more courageous, try “man
3 readline” to learn about libreadline.a,
and google to learn how to link to it

>

0000000
0000010
0000020
0000030
0000040
0000050
0000060
0000070
0000080
0000090
00000a0
00000b0
00000cO
H.retcH

A

50 4b 03
68 95 25
45 6c 6f
0a la Oa
00 00 91
70 48 59
18 00 00
6f 70 20
78 da 9d
80 94 4b
21 09 10
c8 a0 88
ed 21 a2

04 14 00 00 00 00 00 9c 45
1b 00 00 25 1b 00 00 0d 00
67 6f 2d 31 2e 70 6e 67 89
00 00 00 0d 49 48 44 52 00
08 06 00 00 00 c3 d8 5a 23
73 00 00 Ob 13 00 00 Ob 13
0a 4f 69 43 43 50 50 68 6f
49 43 43 20 70 72 6f 66 69
53 67 54 53 e9 16 3d £f7 de
6f 52 15 08 20 52 42 8b 80
4a 88 21 al d9 15 51 c1 11
03 8e 8e 80 8c 15 51 2c¢ Oc
8e 83 a3 88 8a ca fb el 7b

26 3c f1 d5
00 00 43 53
50 4e 47 0d
00 00 91 00
00 00 00 09
01 00 9a 9c
74 6f 73 68
6c 65 00 00
f4 42 4b 88
14 91 26 2a
45 45 04 1b
8a 0O0a d8 07
a3 6b d6 bc

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

See you on Friday!

CSE333 lec 7 syscall fio // 07-09-14 // Perkins

