
CSE 333 – SECTION 4
References, const and classes

HW2

• Online now. Due on Tuesday, May 6th by 11pm.

• Take a look at it soon. Start early.

• File crawler and Indexer.

This or that?

• Consider the following code:

Pointers: References:

int i; int i;

int *pi = &i; int &ri = i;

They are used differently in expressions:
 *pi = 4; ri = 4;

Pointers and References

• Once a reference is created, it cannot be later made to

reference another object.

• Compare to pointers, which are often reassigned.

• References cannot be null, whereas pointers can.

• References can never be uninitialized. It is also

impossible to reinitialize a reference.

C++ const declaration

• As a declaration specifier, const changes the type to

make the data bits unmodifiable.

 const int m = 255;

• Pointer/Reference to constant integer:

 int n = 100;

 const int *pi = &n; //*pi is read only

 const int &ri = n; //ri is read only

When to use?

• Function parameter types and return types and functions

that declare overloaded operators.

• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from

one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its

lifetime.

• Style Guide Tip:

• use const reference parameters to pass input

• use pointers to pass output parameters

• input parameters first, then output parameters last

C++ Classes

/* Note: This code is unfinished! Beware! */

class Point {

public:

 Point(const int x, const int y); // constructor

 int get_x() { return x_; } // inline member function

 int get_y() { return y_; } // inline member function

 double distance(const Point &p); // member function

 void setLocation(const int x, const int y); //member function

private:

 int x_; // data member

 int y_; // data member

}; // class Point

Section Exercise – Part I

• Define a class Rectangle whose instance variables are a

pair of Point objects (upper left, lower right).

• Include at least one constructor. Make sure you get const

right in the right places.

• Methods:

o getul(), getlr() - returns upper and lower points.

o cornerPoints() – to obtain the corner points.

o area() - returns the Rectangle's area.

o contains(Point &p) - returns true or false depending

on whether point p is inside the rectangle.

