CSE 333

Section 2

Valgrind Notes

For use with sec2_Valgrind slides

Some Buggy Code:

e [Note:the newline above main was added to make the slide read better, but this meansthe line numbersin main
are one largerthan whatvalgrind reports. The important point here isthatif you forget to recompile before you run
valgrind then you can get confused when tryingto debug, evenif you only changed whitespace.]

e main:

o Notethat atoiis not the most robust way to parse an int. It returns zeroif it does not understand the input,
whichis often not what you want. See sscanf or strtol.

Valgrind Output:

e "Invalid write of size 4"
o You wrote to a memoryaddressthatyou were not supposed to. The "size 4" indicates you wrote something
that is 4 bytes. This could be:
= int,long, orlonglongifyour systemhas4 byte int, long, orlonglong;
= int32_toruint32_t;
= void *if yoursystem uses 4 byte pointers;
= somestructifithappensto be 4 bytes (includingthe padding);
= etc..

o Notice the stack trace leadingup to the line that caused the error. The root cause of your bug is not
necessarilyinthere, butitisthe first place tolook.

o "Address0x51d2068 is 0 bytes aftera block of size 40 alloc'd"

= This meansyou wrote outside of the memory mallocgave you. This message usually means you are
writing past the end of an array. Specifically, you are writing one element pastthe end (i.e. "Obytes
after").

= Notice once againthe stack trace. This says where you got the memory from, i.e. where the allocation
happened sometime in the past.

o Lookingat RangeArray.c:14, the error is probably the "<=" in the for loop. That would make sense given that
the error message iscommonly seen with going past the end of an array, and we only wrote one element past
the end.

e "Invalidread of size 4"
o Thissame thingis goingonas above, but you are readinginstead of writing.
o "Address0x51d2068 is 0 bytes aftera block of size 40 alloc'd"
= Notice that 0x51d2068 isthe same as the previous error message. This means we are reading the same
data we wrote earlier.

o Lookingat warmup.c:22 (actually 23), the error is probably the "<=" in the for loop. The calculation of length is

the same as in the previous error, so it makes sense thatit would break here too.
e "1234567891011"

o Thisis the outputof the program. Rememberthatvalgrindisrunningthe code;itis not reallylookingatthe

source. It can only find errors that actually happen whilethe programis running.



"HEAP SUMMARY"

o Basically, ifthereisanythingin use whenthe program exits, then we are not happy with you. For one-off
programs that no one else will ever see, you can sometimesignore this. However, if any other person will
see/runyourcode then youshouldfix this. We usually state that valgrind must exist without errors or leaks for
anythingyou submit, but some exercises might play with uninitialized memory (take a close look at “Your code
must” inex2).

"LEAK SUMMARY"

o You can lookintothe documentation for what each of these mean and why they are different. "indirectly lost"
probably means thatthingyou leaked was pointing to somethingelse that was malloc'd (which is now also
leaked). Forexample, you called free directly on some datastructure instead of calling the proper Cleanup
function.

Code Fix:

Note that the comment on RangeArray should indicate that the client should freethe pointeritreturns (if not NULL).
"XXX We must check this explicitly"
o Valgrinddid notfindthis. Itisa logical bug, but notice the length calculation can be negative. This means
mallocwill getanegative argument, whichis an actual bug that needsto be fixed.
"XXX...mallocreturn..."
o Valgrinddid notfindthis either. Neverforgetthat malloccan return NULL.
"XXX... off-by-one..."
o Valgrindfoundthis.

Code Fix (cont.):

The rest of these are straightforward. Valgrind did not find the first, but it did find the others.

Illegal Reads/Writes:

Itisalwaysabad ideafora pointerto pointto invalid memory. Reading or writinginvalid memory is always a bug.
Note that free is handed the correct pointer. Thisis nota bug.

The compilerwill trust any cast, so castinga constantto a pointeris perfectly valid. However, itis pointingtoinvalid
memory so usingitisa bug.

lllegal Frees:

"Addressis notstack'd, malloc'd or (recently) free'd"

o Valgrind does not know anythingaboutthe pointeryouare tryingto use. This likely comes upif you
dereference somethingthatis not a pointer. Rememberthat C does not guarantee a Segfault: anythingcan
happen.

"Invalid free()..." ->"Address 0x51d2050 is 12 bytes aftera block of size 4 alloc'd"

o Unlike the previous error, valgrind recognizes the address as something "nearby" to a malloc'd pointerandis

tryingto be helpful by tellingwherethe mallochappened.



