
CSE333 SECTION 8

Homework 4
• Any questions?

STL
• Standard Template Library

•  Has many pre-build container classes

• STL containers store by value, not by reference
• Should try to use this as much as possible

Template vs Generics
• C++ templates are similar to preprocessor macros

•  A template will be “materialized” into multiple copies with T
replaced

•  Accepts primitive data types and classes

•  Java generic can only be used on classes

C++ Exceptions
• Provide a way to react to exceptional in programs by

transferring control to special handlers

try
 {
 throw 20;
 }
 catch (int e)
 {
 cout << "An exception occurred. " << e << '\n';
 }

C++ Exceptions
try {
 // code here
}
catch (int param) { cout << "int exception"; }
catch (char param) { cout << "char exception"; }
catch (...) { cout << "default exception"; }

C++ Exceptions
•  std::exception is the base class specifically designed to

declare objects to be thrown as exceptions
• Has a virtual member function called “what” that returns a

null-terminated character sequence (of type char *)
containing some sort of description of the exception.

class myexception: public exception {
 virtual const char* what() const throw() {
 return "My exception happened";
 }
} myex;

C++ Exceptions
C++ Standard Library also uses exceptions:

int main () {
 try
 {
 int* myarray= new int[1000];
 }
 catch (exception& e)
 {
 cout << "Standard exception: " << e.what() << endl;
 }
 return 0;
}

C++ vs Java Exceptions
•  In C++, all types (including primitive and pointer) can be

thrown as exception
•  only throwable objects in Java

•  In C++, there is a special catch called “catch all” that can
catch all kind of exceptions
•  catch (...) // catch all

•  In Java, there is a block called finally that is always
executed after the try-catch block.
•  no such block in C++

• A few other subtle differences

Exception Safety
• No-throw guarantee
• Strong exception safety: commit or rollback
• Basic exception safety: no-leak guarantee
• No exception safety: no guarantees are made

Resource Acquisition Is Initialization
• Holding a resource is tied to object lifetime:
• Resource allocation (acquisition) is done during object

creation (specifically initialization), by the constructor,
• Resource deallocation (release) is done during object

destruction, by the destructor.
•  If objects are destructed properly, resource leaks do not occur.

Example
void write_to_file (const std::string & message) {
 // mutex to protect file access
 static std::mutex mutex;

 // lock mutex before accessing file
 std::lock_guard<std::mutex> lock(mutex);

 // try to open file
 std::ofstream file("example.txt");
 if (!file.is_open())
 throw std::runtime_error("unable to open file");

 // write message to file
 file << message << std::endl;
}

Smart Pointers
• A smart pointer is an object that stores a pointer to a heap

allocated object
•  a smart pointer looks and behaves like a regular C++ pointer
•  how? by overloading *, -> , [] , etc.

•  a smart pointer can help you manage memory
•  the smart pointer will delete the pointed-to object at the right time,

including invoking the object’s destructor

• when that is depends on what kind of smart pointer you
use
•  so, if you use a smart pointer correctly, you no longer have to

remember when to delete new’d memory

Smart Pointers
•  The unique_ptr template is part of C++’s standard library

•  available in the new C++11 standard

• A unique_ptr takes ownership of a pointer
•  when the unique_ptr object is delete’d or falls out of scope, its

destructor is invoked, just like any C++ object
•  this destructor invokes delete on the owned pointer

Example
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::unique_ptr
#include <stdlib.h> // for EXIT_SUCCESS

void Leaky() {
 int *x = new int(5); // heap allocated
 (*x)++;
 std::cout << *x << std::endl;
} // never used delete, therefore leak

void NotLeaky() {
 std::unique_ptr<int> x(new int(5)); // wrapped, heap-allocated
 (*x)++;
 std::cout << *x << std::endl;
} // never used delete, but no leak

Why are unique_ptrs useful?
•  If you have many potential exits out of a function, it’s easy

to forget to call delete on all of them
•  unique_ptr will delete its pointer when it falls out of scope
•  thus, a unique_ptr also helps with exception safety

unique_ptrs cannot be copied
•  std::unique_ptr disallows the use of its copy constructor

and assignment operator
•  therefore, you cannot copy a unique_ptr
•  this is what it means for it to be “unique”

Move
•  unique_ptr supports move semantics

•  can “move” ownership from one unique_ptr to another

•  old owner:
•  post-move, its wrapped pointer is set to NULL

•  new owner:
•  pre-move, its wrapped pointer is delete’d
•  post-move, its wrapped pointer is the moved pointer

Example
int main(int argc, char **argv) {
 unique_ptr<int> x(new int(5));
 cout << "x: " << x.get() << endl;
 unique_ptr<int> y = std::move(x); // y takes ownership, x
abdicates it
 cout << "x: " << x.get() << endl;
 cout << "y: " << y.get() << endl;
 unique_ptr<int> z(new int(10));

 // z delete's its old pointer and takes ownership of y's pointer.
 // y abdicates its ownership.
 z = std::move(y);
 return EXIT_SUCCESS;
}

unique_ptr and STL
•  unique_ptrs can be stored in STL containers!!

•  but, remember that STL containers like to make lots copies of
stored objects

•  and, remember that unique_ptrs cannot be copied
•  how can this work??

• Move semantics to the rescue
•  when supported, STL containers will move rather than copy
•  luckily, unique_ptrs support move semantics

Shared Pointers
A std::shared_ptr is similar to a std::unique_ptr
•  but, the copy / assign operators increment a reference

count rather than transferring ownership
•  after copy / assign, the two shared_ptr objects point to the

same pointed-to object, and the (shared) reference count
is 2

• when a shared_ptr is destroyed, the reference count is
decremented

• when the reference count hits zero, the pointed-to object
is deleted

Example
std::string foo() {
 std::string str;
 // Do cool things to or using str
 return str;
}

Example
std::string* foo() {
 std::string str;
 // Do cool things to or using str
 return &str;
}

Example
std::string* foo() {
 std::string* str = new std::string();
 // Do cool things to or using str
 return str;
}

Example
shared_ptr<std::string> foo() {
 shared_ptr<std::string> str = new std::string();
 // Do cool things to or using str
 return str;
}

