
CSE333 SECTION 6

GNU C Library
•  “de facto” standard C library
• Contains a bunch of header files and APIs to do various

tasks

• Don’t need to memorize everything
• Do need to know what if there’s an API that can do X

• Source available at: http://www.gnu.org/software/libc/
download.html

Error Reporting
• Most library functions return a special value to indicate

that they have failed.
•  typically -1, a null pointer, or a constant such as EOF that is defined

for that purpose.

•  To find out what kind of error it was, you need to look at
the error code stored in the variable errno

Errno
Variable: volatile int errno
• Contains the system error number. You can change the

value of errno.
•  Initially set to zero at program startup is zero
• Many library functions are guaranteed to set it to certain

nonzero values when they encounter certain kinds of
errors

• Not changed when library function succeed
•  the value of errno after a successful call is not necessarily zero,

Error Codes
•  Macro: int EPERM
•  Operation not permitted

•  Macro: int ENOENT
•  No such file or directory

•  Macro: int ESRCH
•  No process matches the specified process ID.

•  Macro: int EINTR
•  Interrupted function call

• ……..

Error Messages
•  Function: char * strerror (int errnum)
• maps the error code specified by the errnum argument to

a descriptive error message string. The return value is a
pointer to this string.

•  Function: void perror (const char *message)
• Prints an error message to the stream stderr
•  If message is either a null pointer or an empty string,

perror just prints the error message corresponding to
errno

Program Arguments
•  The system starts a C program by calling the function

main
int main (int argc, char *argv[])
• Argc: number of command line arguments
• Argv: a vector of C strings; its elements are the individual

command line argument strings.
•  The file name of the program being run is also included in

the vector as the first element
• A null pointer always follows the last element: argv[argc] is

this null pointer.

Parsing Program Arguments
Function: int getopt (int argc, char *const *argv, const char
*options)
•  Gets the next option argument from the argument list specified

by the argv and argc arguments.
•  Options: a string that specifies the option characters that are

valid for this program.

Return value:
•  The option character for the next command line option. Sets

optarg if the option has an argument
•  -1, when no more option arguments are available
•  ‘?’ for unknown option character or a missing option argument.

Sets the external variable optopt to the actual option character.

Getopt Example
 while ((c = getopt (argc, argv, "abc:")) != -1)
 switch (c)
 {
 case 'a':
 aflag = 1;
 break;
 case 'b':
 bflag = 1;
 break;
 case 'c':
 cvalue = optarg;
 break;
 case '?':
 if (optopt == 'c')
 fprintf (stderr, "Option -%c requires an
argument.\n", optopt);
 else if (isprint (optopt))
 fprintf (stderr, "Unknown option `-%c'.\n",
optopt);
 else
 fprintf (stderr,
 "Unknown option character `\\x%x'.\n",
 optopt);
 return 1;
 default:
 abort ();
 }

% testopt
aflag = 0, bflag = 0, cvalue = (null)

% testopt -a -b
aflag = 1, bflag = 1, cvalue = (null)

% testopt -ab
aflag = 1, bflag = 1, cvalue = (null)

% testopt -c foo
aflag = 0, bflag = 0, cvalue = foo

% testopt arg1
aflag = 0, bflag = 0, cvalue = (null)
Non-option argument arg1

Environment Variables
• When a program is executed, it receives information

about the context in which it was invoked in two ways.
•  Program arguments: pass command-line arguments specific to the

particular program being invoked
•  Environment variables: information that is shared by many

programs, changes infrequently, and that is less frequently used

$export NAME=VALUE
$echo $NAME
• Programs executed from the shell inherit all of the

environment variables from the shell.

Environment Variables
Standard environment variables include:
• HOME: user’s home directory, or initial default working

directory.
•  LOGNAME: name that the user used to log
• PATH: a sequence of directory names which is used for

searching for a file
•  TERM: specifies the kind of terminal that is receiving

program
•  TZ: specifies the time zone

Environment Access
•  The value of an environment variable can be accessed

with the getenv function

Function: char * getenv (const char *name)
•  This function returns a string that is the value of the

environment variable name

Example

