CSE333 SECTION 6

B
GNU C Library

- “de facto” standard C library

- Contains a bunch of header files and APIs to do various
tasks

- Don’t need to memorize everything
- Do need to know what if there’'s an APl that can do X

- Source available at: http://www.gnu.org/software/libc/
download.html

B
Error Reporting

- Most library functions return a special value to indicate
that they have failed.

- typically -1, a null pointer, or a constant such as EOF that is defined
for that purpose.

- To find out what kind of error it was, you need to look at
the error code stored in the variable errno

Errno

Variable: volatile int errno

Contains the system error number. You can change the
value of errno.

Initially set to zero at program startup is zero

Many library functions are guaranteed to set it to certain
nonzero values when they encounter certain kinds of
errors
Not changed when library function succeed

the value of errno after a successful call is not necessarily zero,

Error Codes

- Macro: int EPERM
- Operation not permitted

- Macro: int ENOENT
- No such file or directory

- Macro: int ESRCH
- No process matches the specified process ID.

- Macro: int EINTR
- Interrupted function call

Error Messages

- Function: char * strerror (int errnum)

- maps the error code specified by the errnum argument to
a descriptive error message string. The return value is a
pointer to this string.

- Function: void perror (const char *message)
- Prints an error message to the stream stderr

- If message is either a null pointer or an empty string,
perror just prints the error message corresponding to

errno

Program Arguments

The system starts a C program by calling the function
main

iInt main (int argc, char *argv|[])
Argc: number of command line arguments

Argv: a vector of C strings; its elements are the individual
command line argument strings.

The file name of the program being run is also included in
the vector as the first element

A null pointer always follows the last element: argv[argc] is
this null pointer.

Parsing Program Arguments

Function: int getopt (int argc, char *const *argv, const char
*options)
Gets the next option argument from the argument list specified
by the argv and argc arguments.

Options: a string that specifies the option characters that are
valid for this program.

Return value:

The option character for the next command line option. Sets
optarg if the option has an argument

-1, when no more option arguments are available

“?" for unknown option character or a missing option argument.
Sets the external variable optopt to the actual option character.

Getopt Example

% testopt
aflag = 0, bflag = 0, cvalue = (null)

% testopt -a -b
aflag = 1, bflag = 1, cvalue = (null)

% testopt -ab
aflag = 1, bflag = 1, cvalue = (null)

% testopt -c foo
aflag = 0, bflag = 0, cvalue = foo

% testopt arg1
aflag = 0, bflag = 0, cvalue = (null)
Non-option argument arg1

while ((c = getopt (argc, argy, "abc:")) 1= -1)
switch (c)
{
case 'a".
aflag = 1;
break;
case 'b":
bflag = 1;
break;
case 'c".
cvalue = optarg;
break;
case '?"
if (optopt =="c')
fprintf (stderr, "Option -%c requires an
argument.\n", optopt);
else if (isprint (optopt))
fprintf (stderr, "Unknown option "-%c'.\n",
optopt);
else
fprintf (stderr,
"Unknown option character "\\x%x'.\n",
optopt);
return 1;
default:
abort ();

1

Environment VVariables

When a program is executed, it receives information
about the context in which it was invoked in two ways.

Program arguments: pass command-line arguments specific to the
particular program being invoked

Environment variables: information that is shared by many
programs, changes infrequently, and that is less frequently used

$export NAME=VALUE
$echo SNAME

Programs executed from the shell inherit all of the
environment variables from the shell.

Environment VVariables

Standard environment variables include:

- HOME: user’s home directory, or initial default working
directory.

- LOGNAME: name that the user used to log

- PATH: a sequence of directory names which is used for
searching for a file

- TERM: specifies the kind of terminal that is receiving
program

- TZ: specifies the time zone

Environment Access

- The value of an environment variable can be accessed
with the getenv function

Function: char * getenv (const char *name)

- This function returns a string that is the value of the
environment variable name

Example

