
CSE333 SECTION 5

Important Dates
• October 27th – Homework 2 Due

• October 29th – Midterm

String API vs. Byte API
• Recall: Strings are character arrays terminated by ‘\0’
•  The String API (functions that start with str<…>) rely on

the null terminating character
•  The Byte API (functions that start with mem<…>) ask for a

number of bytes to process
Examples

strcpy(src, dst) memcpy(dst, src, bytes)

strcmp(str1, str2) memcmp(str1, str2, bytes)

strchr(str, char) memchr(data, char, bytes)

File I/O in C - Streams
• Reading and Writing using the notion of a stream
•  Input can either be text or binary data
• Streams are either buffered (default) or unbuffered
• Standard Streams: stdin(fd 0), stdout(fd 1), stderr(fd 2)

Lib C File I/O
Utilizes FILE * for I/O.
#include <stdio.h>
File *f;

FILE *fopen(… char *filename, char *mode)
Modes:
•  r - read only
•  r+ - Read and Write
• And more! man fopen

Lib C File I/O
int fclose(FILE)
Returns 0 on success, otherwise EOF and set errno

size_t fread(data, size of chunks, number of chunks, FILE)
Returns the number of chunks read

size_t fwrite(data, size of chunks, number of chunks, FILE)
Returns the number of chunks written

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define READBUFSIZE 128
int main(int argc, char **argv) {
 FILE *f;
 char readbuf[READBUFSIZE];
 size_t readlen;

 if (argc != 2) {
 fprintf(stderr, "usage: ./fread_example filename\n");
 return EXIT_FAILURE; // defined in stdlib.h
 }

 // Open, read, and print the file
 f = fopen(argv[1], "rb"); // "rb" --> read, binary mode
 if (f == NULL) {
 fprintf(stderr, "%s -- ", argv[1]);
 perror("fopen failed -- ");
 return EXIT_FAILURE;
 }

 // Read from the file, write to stdout.
 while ((readlen = fread(readbuf, 1, READBUFSIZE, f)) > 0)
 fwrite(readbuf, 1, readlen, stdout);
 fclose(f);
 return EXIT_SUCCESS; // defined in stdlib.h
}

stderr is a stream
for printing error
output to a console

fopen opens a
stream to read or
write a file

perror writes a string
describing the last error
to stderr

stdout is for printing
non-error output to the
console

printf(...) is equivalent to
fprintf(stdout, ...)

fread_example.c

Buffered I/O – Potential Problems?
• Data written using fwrite(…) is copied into a buffered

allocated by stdio and written into memory when,
•  When fflush(…) is called
•  Buffer size is exceeded
•  For stdout, when a new line is reached (“line buffered”)
•  When fclose(…) is called
•  When your process exits gracefully

• Are there any potential problems?

Why is this a gotcha?
• What happens if...

•  your computer loses power before the buffer is flushed?
•  your program assumes data is written to a file, and it

signals another program to read it?

• What are the performance implications?
•  data is copied into the stdio buffer

•  consumes CPU cycles and memory bandwidth
•  can potentially slow down high performance applications, like a

web server or database (“zero copy”)

What to do about it
•  Turn off buffering with setbuf()

•  this, too, may cause performance problems
•  e.g., if your program does many small fwrite()’s, each of which will

now trigger a system call into the Linux kernel

• Use a different set of system calls
•  POSIX provides open(), read(), write(), close(), and others
•  no buffering is done at the user level

•  but...what about the layers below?
•  the OS caches disk reads and writes in the FS buffer cache
•  disk controllers have caches too!

stat
Returns the information about a specific file
•  int stat(const char *path, struct stat *buf);
•  int fstat(int fd, struct stat *buf);

struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for file system I/O */
 blkcnt_t st_blocks; /* number of 512B blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

POSIX I/O
•  What’s the difference?

•  Unbuffered at the user level
•  Less convenient

•  When would I use it? Networking
•  How do I use it?

•  #include <fcntl.h>
•  #include <unistd.h>
•  #include <sys/types.h>
•  #include <sys/uio.h>
•  man 2 <open, close, read, write>

•  POSIX I/O uses file descriptors instead of FILE
•  Essentially an int representing the file

open / close
To open a file...
•  pass in the filename

and access mode,
similar to fopen

•  get back a “file
descriptor”
•  similar to a (FILE *) from

fopen, but is just an int

#include <fcntl.h>

...

 int fd = open("foo.txt",
 O_RDONLY);
 if (fd == -1) {
 perror("open failed");
 exit(EXIT_FAILURE);
 }

...

 close(fd);

Reading from a file

 ssize_t read(int fd, void *buf, size_t count);

•  returns the # of bytes read
•  might be fewer bytes than you requested (!!!)
•  returns 0 if you’re at end-of-file
•  return -1 on error

•  warning: read has some very surprising error modes!

read() error modes
On error, the “errno” global variable is set
•  you need to check it to see what kind of error happened

What errors might read() encounter?
• EBADF -- bad file descriptor
• EFAULT -- output buffer is not a valid address
• EINTR -- read was interrupted, please try again
•  and many others

How to read() n bytes
#include <errno.h>
#include <unistd.h>

...

 char *buf = ...;
 int bytes_left = n;
 int result = 0;

 while (bytes_left > 0) {
 result = read(fd, buf + (n-bytes_left), bytes_left);
 if (result == -1) {
 if (errno != EINTR)) {
 // a real error happened, return an error result
 }
 // EINTR happened, do nothing and loop back around
 continue;
 }
 bytes_left -= result;
 }

Other low-level functions
Read the man pages to learn about
• write() -- write data
•  fsync() -- flush data to the underlying device
•  opendir(), readdir(), closedir() -- get a directory listing

