CSE333 SECTION 4

Important Dates

- October 27t — Homework 2 Due

- October 29t — Midterm

Survey

- Let us know how the course is going!

- In the feedback section feel free to write about:

- Improvements we can make in:
- Lecture
- Section
- Assignments (Exercises & Homework)

- Anything else you can think of related to the course

Assignment Turn In Policy

- Assignments are due at the specified due date
- The Drop-Box will close at some point after the due date

- After that point, submissions will happen by email

- Might or Might Not be accepted

B
GDB - Debugging

- Requirements:
- System has GDB (Lab Machines/Attu do)

- Compile code with —g (debugging symbols) symbol

- Running GDB:

- gdb <file name>
- run <optional command line arguments>

- Stopping GDB:
- If the command line is listening, quit or Ctrl-d
- To halt the current process, Ctrl-c

L
GDB — Breakpoints

- Setting breakpoints:
- At a function, break <function name>
- At an address, break *<address>
- Breakpoints are issued a number used to identify them

- info breakpoints — get breakpoint identifiers and more

- Deleting breakpoints:
- Remove a single breakpoint, delete <breakpoint number>
- Remove all the breakpoints, delete

D
GDB — Execution

- To execute one statement, s or step

- To go to next breakpoint, continue

- To go to specific breakpoint, until <breakpoint identifier>
- To finish current function, finish

- Calling a function:
- call <function name>(argument, argument, ..., argument)

B
GDB — Examining Data

- To get the names and values of local variables, info locals
- To get information about the current stack, info stack

- Printing Data
- Modifiers:

- /d — decimal
/X — hex
- /t — binary
- To print the value of a single variable, print <variable name>

Valgrind — Memory Management

- Possible problems:
- Use uninitialized memory
- Read/Write after freeing
- Read/Write outside of memory block
- Read/Write on inappropriate part of stack
- Memory leaks
- Mismatched use of malloc/free

- Running Valgrind:
- valgrind ./(executable) (If in current directory)
- Valgrind options
- --leak-check=full, used to display more information
- --show-reachable=yes, show if the memory is still reachable

B
Valgrind - Asides

- Will not work on Macs
- Is also useful for discovering more info about seg faults

B
Valgrind — Error output

int main(int argc, char **argv) {
int *x;
*x = 333;
return EXIT _SUCCESS;

}

Valgrind output:
Use of uninitialized value of size 8

B
Valgrind — Error output

int main(int argc, char **argv) {
int *x = (int *) malloc(sizeof(int));
X +=2;
printf(“My value: %d\n”, *x);
*X = 4;
free(x - 2);
printf("My value: %d\n”, *x);
return EXIT_SUCCESS;

(Continued on next slide)

B
Valgrind — Error output

(Continued from previous slide)

Valgrind output:

- Invalid read of size 4
- Invalid write of size 4
- Invalid read of size 4

Can you identify the problems?

lllegal Frees

int main(int argc, char **argv) {
free((void *) Oxcafefood);

int *x = (int *) malloc(sizeof(int));
free(x + 4);
free(x);

return EXIT_SUCCESS;
}

(Continued on next slide)

B
Valgrind — Error output

(Continued from previous slide)

Valgrind output:
- Invalid free() / delete / delete[] / realloc()
- Invalid free() / delete / delete[] / realloc()

B
Valgrind — Error output

int main(int argc, char** argv) {
int *x = (int *) malloc(sizeof(int));
*x = 333;
return EXIT _SUCCESS;

}

(Example code)

Some code from lecture

(See lectureProblem/)

Lets run valgrind on our app and ensure that its leak free.

B
Lecture Code — Valgrind output

==5140== 26 bytes in 1 blocks are definitely lost in loss record 1 of 4

==5140==at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==5140== by Ox3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.s0)

==5140== by Ox3BF8851CAG: asprintf (in /usr/lib64/libc-2.18.s0)

==5140== by Ox4006E9: point_toString (Point.c:20)

==5140== by 0x400856: main (App.c:10)

==5140==

==5140== 26 bytes in 1 blocks are definitely lost in loss record 2 of 4

==5140==at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==5140== by Ox3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.s0)

==5140== by Ox3BF8851CAG: asprintf (in /usr/lib64/libc-2.18.s0)

==5140== by 0x4006E9: point_toString (Point.c:20)

==5140== by 0x40089C: main (App.c:16)

==5140==

==5140== 27 bytes in 1 blocks are definitely lost in loss record 3 of 4

==5140==at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==5140== by Ox3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.s0)

==5140== by Ox3BF8851CAG: asprintf (in /usr/lib64/libc-2.18.s0)

==5140== by 0x4007D9: vector_toString (Vector.c:20)

==5140== by 0x400838: main (App.c:10)

==5140==

==5140== 27 bytes in 1 blocks are definitely lost in loss record 4 of 4

==5140==at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==5140== by Ox3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.s0)

==5140== by 0x3BF8851CAG: asprintf (in /usr/lib64/libc-2.18.s0)

==5140== by 0x4007D9: vector_toString (Vector.c:20)

==5140== by 0x400847: main (App.c:10)

Lecture Code - Problem

- What's the problem?

Lecture Code - Problem

man asprintf:

The functions asprintf() and vasprintf() are analogs of
sprintf(3) and vsprintf(3), except that they allocate a
string large enough to hold the output including the
terminating null byte (\O'), and return a pointer to it via
the first argument. This pointer should be passed to
free(3) to release the allocated storage when it is no
longer needed.

asprintf is allocating memory, but we need to free it

Lecture Code - Solutions

- How can we solve this problem?

Lecture Code - Solutions

- Here are two possibilities:
- Ensure that we free it by individually holding them in variables
- Use a static global array
- Can you think of any others?

- What are the downsides of each possibility?

One more example

(See
https://courses.cs.washington.edu/courses/cse333/14su/

sections/sec2 code/imsobuggy.c)

Can you fix all the problems?

