
CSE333 SECTION 4

Important Dates
• October 27th – Homework 2 Due

• October 29th – Midterm

Survey
•  Let us know how the course is going!

•  In the feedback section feel free to write about:
•  Improvements we can make in:

•  Lecture
•  Section
•  Assignments (Exercises & Homework)

•  Anything else you can think of related to the course

Assignment Turn In Policy
•  Assignments are due at the specified due date

•  The Drop-Box will close at some point after the due date

•  After that point, submissions will happen by email

•  Might or Might Not be accepted

GDB - Debugging
• Requirements:

•  System has GDB (Lab Machines/Attu do)
•  Compile code with –g (debugging symbols) symbol

• Running GDB:
•  gdb <file name>
•  run <optional command line arguments>

• Stopping GDB:
•  If the command line is listening, quit or Ctrl-d
•  To halt the current process, Ctrl-c

GDB – Breakpoints
• Setting breakpoints:

•  At a function, break <function name>
•  At an address, break *<address>
•  Breakpoints are issued a number used to identify them

•  info breakpoints – get breakpoint identifiers and more

• Deleting breakpoints:
•  Remove a single breakpoint, delete <breakpoint number>
•  Remove all the breakpoints, delete

GDB – Execution
•  To execute one statement, s or step
•  To go to next breakpoint, continue
•  To go to specific breakpoint, until <breakpoint identifier>
•  To finish current function, finish

• Calling a function:
•  call <function name>(argument, argument, …, argument)

GDB – Examining Data
•  To get the names and values of local variables, info locals
•  To get information about the current stack, info stack

• Printing Data
•  Modifiers:

•  /d – decimal
•  /x – hex
•  /t – binary

•  To print the value of a single variable, print <variable name>

Valgrind – Memory Management
• Possible problems:

•  Use uninitialized memory
•  Read/Write after freeing
•  Read/Write outside of memory block
•  Read/Write on inappropriate part of stack
•  Memory leaks
•  Mismatched use of malloc/free

• Running Valgrind:
•  valgrind ./(executable) (If in current directory)
•  Valgrind options

•  --leak-check=full, used to display more information
•  --show-reachable=yes, show if the memory is still reachable

Valgrind - Asides
• Will not work on Macs
•  Is also useful for discovering more info about seg faults

Valgrind – Error output
int main(int argc, char **argv) {
 int *x;
 *x = 333;
 return EXIT_SUCCESS;
}

Valgrind output:
Use of uninitialized value of size 8

Valgrind – Error output
int main(int argc, char **argv) {
 int *x = (int *) malloc(sizeof(int));
 x += 2;
 printf(“My value: %d\n”, *x);
 *x = 4;
 free(x - 2);
 printf(“My value: %d\n”, *x);
 return EXIT_SUCCESS;
}

(Continued on next slide)

Valgrind – Error output
(Continued from previous slide)

Valgrind output:
•  Invalid read of size 4
•  Invalid write of size 4
•  Invalid read of size 4

Can you identify the problems?

Illegal Frees
int main(int argc, char **argv) {
 free((void *) 0xcafefood);

 int *x = (int *) malloc(sizeof(int));
 free(x + 4);
 free(x);

 return EXIT_SUCCESS;
}

(Continued on next slide)

Valgrind – Error output
(Continued from previous slide)

Valgrind output:
•  Invalid free() / delete / delete[] / realloc()
•  Invalid free() / delete / delete[] / realloc()

Valgrind – Error output
int main(int argc, char** argv) {
 int *x = (int *) malloc(sizeof(int));
 *x = 333;
 return EXIT_SUCCESS;
}

(Example code)

Some code from lecture
(See lectureProblem/)

Lets run valgrind on our app and ensure that its leak free.

Lecture Code – Valgrind output
•  ==5140== 26 bytes in 1 blocks are definitely lost in loss record 1 of 4
•  ==5140== at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
•  ==5140== by 0x3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x3BF8851CA6: asprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x4006E9: point_toString (Point.c:20)
•  ==5140== by 0x400856: main (App.c:10)
•  ==5140==
•  ==5140== 26 bytes in 1 blocks are definitely lost in loss record 2 of 4
•  ==5140== at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
•  ==5140== by 0x3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x3BF8851CA6: asprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x4006E9: point_toString (Point.c:20)
•  ==5140== by 0x40089C: main (App.c:16)
•  ==5140==
•  ==5140== 27 bytes in 1 blocks are definitely lost in loss record 3 of 4
•  ==5140== at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
•  ==5140== by 0x3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x3BF8851CA6: asprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x4007D9: vector_toString (Vector.c:20)
•  ==5140== by 0x400838: main (App.c:10)
•  ==5140==
•  ==5140== 27 bytes in 1 blocks are definitely lost in loss record 4 of 4
•  ==5140== at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
•  ==5140== by 0x3BF8874B07: vasprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x3BF8851CA6: asprintf (in /usr/lib64/libc-2.18.so)
•  ==5140== by 0x4007D9: vector_toString (Vector.c:20)
•  ==5140== by 0x400847: main (App.c:10)

Lecture Code - Problem
• What’s the problem?

Lecture Code - Problem
man asprintf:
•  The functions asprintf() and vasprintf() are analogs of

sprintf(3) and vsprintf(3), except that they allocate a
string large enough to hold the output including the
terminating null byte ('\0'), and return a pointer to it via
the first argument. This pointer should be passed to
free(3) to release the allocated storage when it is no
longer needed.

•  asprintf is allocating memory, but we need to free it

Lecture Code - Solutions
• How can we solve this problem?

Lecture Code - Solutions
• Here are two possibilities:

•  Ensure that we free it by individually holding them in variables
•  Use a static global array
•  Can you think of any others?

• What are the downsides of each possibility?

One more example
(See
https://courses.cs.washington.edu/courses/cse333/14su/
sections/sec2_code/imsobuggy.c)

Can you fix all the problems?

