
CSE 333 
Lecture 17 -- network programming intro 



Today 

Network programming 

- dive into the Berkeley / POSIX sockets API 



Files and file descriptors 

Remember open, read, write, and close? 

- POSIX system calls for interacting with files 

- open( ) returns a file descriptor 

‣ an integer that represents an open file 

‣ inside the OS, it’s an index into a table that keeps track of any 

state associated with your interactions, such as the file position 

‣ you pass the file descriptor into read, write, and close 



Networks and sockets 

UNIX likes to make all I/O look like file I/O 

- the good news is that you can use read( ) and write( ) to interact with 

remote computers over a network! 

- just like with files.... 

‣ your program can have multiple network channels open at once 

‣ you need to pass read( ) and write( ) a file descriptor to let the OS know 

which network channel you want to write to or read from 

- a file descriptor used for network communications is a socket 
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Types of sockets 

Stream sockets 

- for connection-oriented, point-to-point, reliable bytestreams 

‣ uses TCP, SCTP, or other stream transports 

Datagram sockets 

- for connection-less, one-to-many, unreliable packets 

‣ uses UDP or other packet transports 

Raw sockets 

- for layer-3 communication (raw IP packet manipulation) 



Stream sockets 

Typically used for client / 

server communications 

- but also for other architectures, 

like peer-to-peer 

Client 

- an application that establishes a 

connection to a server 

Server 

- an application that receives 

connections from clients 

client server 

1. establish connection 

client server 

2. communicate 

server 

3. close connection 

client 



Datagram sockets 

Used less frequently than 

stream sockets 

- they provide no flow control, 

ordering, or reliability 

Often used as a building block 

- streaming media applications 

- sometimes, DNS lookups 

host 

host 

1. create socket 

host 

host 
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1. create socket 

host 

host 

2. communicate 

host 

host 



The sockets API 

Berkeley sockets originated in 4.2 BSD Unix circa 1983 

- it is the standard API for network programming 

‣ available on most OSs 

POSIX socket API 

- a slight updating of the Berkeley sockets API 

‣ a few functions were deprecated or replaced 

‣ better support for multi-threading was added 



Let’s dive into it! 

We’ll start by looking at the API from the point of view 

of a client connecting to a server over TCP 

- there are five steps: 

1. figure out the IP address and port to which to connect 

2. create a socket 

3. connect the socket to the remote server 

4. read( ) and write( ) data using the socket 

5. close the socket 



Connecting from a client to a server. 

 

Step 1. Figure out the IP address and port to which to connect. 



Network addresses 

For IPv4, an IP address is a 4-byte tuple 

- e.g., 128.95.4.1  (80:5f:04:01 in hex) 

For IPv6, an IP address is a 16-byte tuple 

- e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33 

‣ 2d01:0db8:f188::1f33 in shorthand 



IPv4 address structures 

// Port numbers and addresses are in *network order*. 

 

// A mostly-protocol-independent address structure. 

struct sockaddr { 

    short int     sa_family;    // Address family; AF_INET, AF_INET6 

    char          sa_data[14];  // 14 bytes of protocol address 

}; 

 

// An IPv4 specific address structure. 

struct sockaddr_in { 

    short int          sin_family;  // Address family, AF_INET == IPv4 

    unsigned short int sin_port;    // Port number 

    struct in_addr     sin_addr;    // Internet address 

    unsigned char      sin_zero[8]; // Same size as struct sockaddr 

}; 

 

struct in_addr { 

    uint32_t s_addr;  // IPv4 address 

}; 



// A structure big enough to hold either IPv4 or IPv6 structures. 

struct sockaddr_storage { 

    sa_family_t  ss_family;     // address family 

 

    // a bunch of padding; safe to ignore it. 

    char      __ss_pad1[_SS_PAD1SIZE]; 

    int64_t   __ss_align; 

    char      __ss_pad2[_SS_PAD2SIZE]; 

}; 

 

// An IPv6 specific address structure. 

struct sockaddr_in6 { 

    u_int16_t       sin6_family;   // address family, AF_INET6 

    u_int16_t       sin6_port;     // Port number 

    u_int32_t       sin6_flowinfo; // IPv6 flow information 

    struct in6_addr sin6_addr;     // IPv6 address 

    u_int32_t       sin6_scope_id; // Scope ID 

}; 

 

struct in6_addr { 

    unsigned char   s6_addr[16];   // IPv6 address 

}; 

IPv6 address structures 



Generating these structures 

Often you have a string representation of an address 

- how do you generate one of the address structures? 

#include <stdlib.h> 

#include <arpa/inet.h> 

 

int main(int argc, char **argv) { 

  struct sockaddr_in sa; // IPv4 

  struct sockaddr_in6 sa6; // IPv6 

 

  // IPv4 string to sockaddr_in. 

  inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr)); 

 

  // IPv6 string to sockaddr_in6. 

  inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr)); 

 

  return EXIT_SUCCESS; 

} 

genaddr.cc 



Generating these structures 

How about going in reverse? 

#include <stdlib.h> 

#include <arpa/inet.h> 

#include <iostream> 

 

int main(int argc, char **argv) { 

  struct sockaddr_in6 sa6;         // IPv6 

  char astring[INET6_ADDRSTRLEN];  // IPv6 

 

  // IPv6 string to sockaddr_in6. 

  inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr)); 

 

  // sockaddr_in6 to IPv6 string. 

  inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN); 

  std::cout << astring << std::endl; 

 

  return EXIT_SUCCESS; 

} 

genstring.cc 



DNS 

People tend to use DNS names, not IP addresses 

- the sockets API lets you convert between the two 

- it’s a complicated process, though: 

‣ a given DNS name can have many IP addresses 

‣ many different DNS names can map to the same IP address 

• an IP address will reverse map into at most one DNS names, and maybe 

none 

‣ a DNS lookup may require interacting with many DNS servers 

You can use the “dig” Linux program to explore DNS 

- “man dig” 



DNS hierarchy 

. 

“.” --  root name servers 

198.41.0.4 (a.root-servers.net) 

192.228.79.201 (b.root-servers.net) 

202.12.27.33 (m.root-servers.net) 

• • • 

com xxx uk org • • • “.com.” --  top-level domain server 

google yahoo hulu gribble apache fsf • • • • • • 

www mail docs finance • • • seattle www 



Resolving DNS names 

The POSIX way is to use getaddrinfo( ) 

- a pretty complicated system call; the basic idea... 

‣ set up a “hints” structure with constraints you want respected 

• e.g., IPv6, IPv4, or either 

‣ tell getaddrinfo( ) which host and port you want resolved 

• host: a string representation; DNS name or IP address 

‣ getaddrinfo( ) gives you a list of results packet in an “addrinfo” struct 

‣ free the addrinfo structure using freeaddrinfo( ) 



DNS lookup example 

see dnsresolve.cc 



Connecting from a client to a server. 

 

Step 2. Create a socket. 



Creating a socket 

Use the socket system call 

- creating a socket doesn’t yet bind it to a local address or port 

#include <errno.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <sys/types.h> 

#include <iostream> 

 

int main(int argc, char **argv) { 

  int socket_fd = socket(PF_INET, SOCK_STREAM, 0); 

  if (socket_fd == -1) { 

     std::cerr << strerror(errno) << std::endl; 

     return EXIT_FAILURE; 

  } 

  close(socket_fd); 

  return EXIT_SUCCESS; 

} 

socket.cc 



Connecting from a client to a server. 

 

Step 3. Connect the socket to the remote server. 



connect( ) 

The connect( ) system call establishes a connection to a 

remote host 

- you pass the following arguments to connect( ): 

‣ the socket file descriptor you created in step 2 

‣ one of the address structures you created in step 1 

- connect may take some time to return 

‣ it is a blocking call by default 

‣ the network stack within the OS will communicate with the remote host to 

establish a TCP connection to it 

‣ this involves ~2 round trips across the network 



connect example 

see connect.cc 



Connecting from a client to a server. 

 

Step 4. read( ) and write( ) data using the socket. 



read( ) 

By default, a blocking call 

- if there is data that has already been received by the 

network stack, then read will return immediately with it 

‣ thus, read might return with less data than you asked for 

- if there is no data waiting for you, by default read( ) will 

block until some arrives 

‣ pop quiz:  how might this cause deadlock? 



write( ) 

By default, a blocking call 

- but, in a more sneaky way 

- when write( ) returns, the receiver (i.e., the other end of the 

connection) probably has not yet received the data 

‣ in fact, the data might not have been sent on the network yet! 

‣ write( ) enqueues your data in a send buffer in the OS, and then 

returns;  the OS will transmit the data in the background 

- if there is no more space left in the send buffer, by default 

write( ) will block 

‣ how might this cause deadlock? 



read/write example 

see sendreceive.cc 



Connecting from a client to a server. 

 

Step 5. close( ) the socket. 



See you on Wednesday! 


