
CSE 333 – SECTION 7
Threads

Threads
• Sequential execution of a program.
• Contained within a process.
• Multiple threads can exist within the same process.

•  Every process starts with one thread of execution, can spawn
more.

•  Threads in a single process share one address space
•  Instructions (code)
•  Static (global) data
•  Dynamic (heap) data
•  Environment variables, open files, sockets, etc.

POSIX threads (Pthreads)
•  The POSIX standard provides APIs for creating and

manipulating threads.
• Part of the standard C/C++ libraries, declared in pthread.h

Core pthread functions
•  pthread_create(thread, attr, start_routine, arg)
•  pthread_exit(status)
•  pthread_join(thread, status)
•  pthread_cancel (thread)

pthread_create
#include <pthread.h>
int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);
•  pthread_create creates a new thread and calls start_routine with arg as

its parameter.
•  pthread_create arguments:

•  thread: A unique identifier for the new thread.
•  attr: An attribute object that may be used to set thread attributes. Use NULL for the

default values.
•  start_routine: The C routine that the thread will execute once it is created.
•  arg: A single argument that may be passed to start_routine. It must be passed by

reference as a pointer cast of type void. NULL may be used if no argument is to be
passed.

•  Compile and link with –lpthread.

Terminating Threads
•  There are several ways in which a thread may be

terminated:
•  The thread returns normally from its starting routine; Its work is

done.
•  The thread makes a call to the pthread_exit subroutine -

whether its work is done or not.
•  The thread is canceled by another thread via the
pthread_cancel routine.

•  The entire process is terminated due to making a call to either the
exec() or exit().

•  If main()finishes first, without calling pthread_exit explicitly
itself.

pthread_exit
void pthread_exit(void *retval);

• Allows the user to terminate a thread and to specify an
optional termination status parameter, retval.

•  In functions that execute to completion normally, you can
often dispense with calling pthread_exit().

• Calling pthread_exit() from main():
•  If main() finishes before the threads it spawned, and does not

call pthread_exit() explicitly, all the threads it created will terminate.
•  To allow other threads to continue execution, the main thread

should terminate by calling pthread_exit() rather than exit().

pthread_join
int pthread_join(pthread_t thread, void **retval);

•  Synchronization between threads.
•  pthread_join blocks the calling thread until the specified thread

terminates and then the calling thread joins the terminated thread.
•  Only threads that are created as joinable can be joined; a thread

created as detached can never be joined. (Refer pthread_create)
•  The target thread's termination return status can be obtained if it was

specified in the target thread's call to pthread_exit().

 Demo: pthread_demo.c

Section exercise (not to be turned in)
• Create a program that spawns two or three different

threads, each of which prints a numeric sequence.
Examples:
•  First n odd numbers
•  First n factorials
•  First n primes

• Use pthread_demo.c for ideas, but the structure might not
be the same.

• Can you do something in the threads (maybe sleep()) so
that different runs of the program don’t always produce
the same output?

Networking & Threads Exercise
•  Implement a chat program in C++.
• Create two threads – Server and the Client.
•  The Client thread reads from stdin, and writes anything

the user types to the network.
•  The Server thread reads from the network, and writes

anything that it receives to stdout.
•  Feel free to use any sample code from lectures or other

exercises to implement the above functions.

