CSE 333 -SECTION 4

Midterm Review

Types of Questions

- Glven spec. - write/complete code.
- Given code - Give output.
- Given code - Find bugs - Fix bugs.

L
Type 1 example

- Given spec. - write/complete code.

Question 1. (20 points) A little C programming. A palindrome is a string that reads the
same forwards or backwards. For instance, “madam”, “abba”, and “x” are palindromes,
while “ab”, and “foo™ are not. You are to complete a function to determine if a string 15 a
palindrome. For this question, a string must be exactly the same forward and backward
to be a palindrome, including whitespace (so the string “nurses run™ is not a palindrome
here). We will also consider an empty string (length 0) to be a palindrome.

Complete the definition of function IsPalindrome below so it returns 1 (true) if its
string argument 15 a palindrome and returns 0 (false) if it is not. You may assume that the
function argument is a properly \0-terminated C string. You may use any of the C string
library functions in <string.h>. You may not copy or modify the string — only examine it.

#include <string.h>

// Return 1 if s is a palindrome, otherwise return 0.
// If the string has length 0, return 1 (true).
int IsPalindrome (char *s) {

L
Type 2 example

- Given code - Give output.
- Tips

Write the output of the following C++ code.

#include <stdlib.h>

- Draw piCtureS! #include <iostream>

- Box and arrow diagrams. int mysteryl(int &a, int *b, int ¢) {
a++;
(*b)--;

c = a + *b;
return c;

}

int main(int argc, char **argv) {
int w = 0, x = 1;
int &y = x;
int *z = ax;

*z = mysteryl(w, &x,
mysteryl(*z, &w, Xx));

std= =cout {{ w {{ " " {{ x {{ " " {{ Y {{ " L1}
std::cout << *z << std::endl;
return 0;

L
Type 3 example

- Given code - Find bugs - Fix bugs.

#inelude <stdlib.h>
#include <iostream>
#include <string> // needed for std::string

using namespace std; f// to use “cout” instead of “std::cout”, ete.
// A class that stores a pair of things of type T.

template <class T> class Pair {
public:
Pair() { } // need default constructor for new Pair<string>[2];
Pair(T a, T b): first_(a), second_(b) { }

void Print() {

cout << "(" << first_ << "," << second_ << ")" << endl;
}
void Set(T a, T b) { first_ = a; second_ = b; }
private:

T first , second ;
}; // <-- end a class Foo { ... }; with a semicolon

Things to watch for

- Memory Leaks

- Invalid reads/writes

- Uninitialized variables

- Pointers and references

- Arguments and parameters

- Return types and return values
- Syntax errors

L
General program organization and

where C fits in the ecosystem

- System layers: C language, libraries, and operating system

- General workflow needed to build a program — preprocessaor,
compile, link

- Preprocessor — how #include, #define, #ifndef and other basic
commands rewrite the program

- Structure of C/C++ programs: header files, source files
- Declarations vs definitions
- Organization and use of header files, including #ifndef guards
- Faking modularity in C — headers, implementations
- Internal vs external linkage; use of static for internal linkage

- Dependencies — what needs to be recompiled when something
changes (dependency graph behind make and similar tools)

- Make and makefile basics — how build dependencies are encoded in
makefile rules

C language and program execution

- Review: standard types, operators, functions, scope, parameters,
strings, etc.
- Extended integer types (int32_t, uint64 t)
- Standard /O library and streams: stdin, stdout, fopen, fread, scanf,
printf, etc.
- POSIX libraries — wrappers for system calls
- POSIX-layer 1/0O: open, read, write, etc.
- Relationship between C standard library, POSIX library functions, and system calls
- Error handling - error codes and errno
- Process address space and memory map (code, static data, heap,
stack)
- Obiject lifetimes: static, automatic, dynamic (heap)
- Stack and function calls — what happens during function call, return
- Function parameters
- Call by value semantics (including structs, pointers)
- Arrays as parameters - pointers
- Using pointers for call-by-reference semantics
- Function pointers as parameters

L
More C

- Pointers, pointers, pointers - &, *, and all that
- Typing rules and pointer arithmetic (what does p+1 mean?)
- Relationship between pointers and arrays, a[i] and pointer arithmetic
- String constants, arrays of characters, C string library
- Using void* as a “generic” pointer type
- Casting
- Dynamic allocation (malloc, free)

- Potential bugs — memory leaks, dangling pointers (including returning pointers
to local data), etc.

- Be able to draw and read diagrams showing storage and pointers, and be able
to trace code that manipulates these things.

Structs — how to define and use, meaning of p->x (= (*p).x), structs
as local variables, parameters, and return values (value semantics)
vs. heap-allocated structs, struct values vs pointers to structs

- Typedef — how to define and use
- Linked data structures in C — linked lists, hash tables, etc.

L
C++

- Classes and modularity, namespaces

- Be able to read simple class definitions and add to them,
implement functions, trace code, etc.

- Know the difference between constructors, copy constructors, and
assignment and when these are called

- Know what a destructor is and when it gets called

- Other basic differences from C
- Simpler, type-safe stream I/O (cout, cin, << and >>)
- Type-safe memory management (new, delete, delete[])
- References — particularly reference parameters

- More pervasive use of const (const data and parameters, const
member functions)

Questions (?)

	CSE 333 – Section 4
	Types of Questions
	Type 1 example
	Type 2 example
	Type 3 example
	Things to watch for
	General program organization and where C fits in the ecosystem�
	C language and program execution�
	More C
	C++
	Questions (?)

