
CSE 333 – SECTION 4
Midterm Review

Types of Questions
• Given spec. - write/complete code.
• Given code - Give output.
• Given code - Find bugs - Fix bugs.

Type 1 example
• Given spec. - write/complete code.

Type 2 example
• Given code - Give output.
• Tips

• Draw pictures!
• Box and arrow diagrams.

Type 3 example
• Given code - Find bugs - Fix bugs.

Things to watch for
• Memory Leaks
• Invalid reads/writes
• Uninitialized variables
• Pointers and references
• Arguments and parameters
• Return types and return values
• Syntax errors

General program organization and
where C fits in the ecosystem
 • System layers: C language, libraries, and operating system
• General workflow needed to build a program – preprocessor,

compile, link
• Preprocessor – how #include, #define, #ifndef and other basic

commands rewrite the program
• Structure of C/C++ programs: header files, source files

• Declarations vs definitions
• Organization and use of header files, including #ifndef guards
• Faking modularity in C – headers, implementations
• Internal vs external linkage; use of static for internal linkage
• Dependencies – what needs to be recompiled when something

changes (dependency graph behind make and similar tools)
• Make and makefile basics – how build dependencies are encoded in

makefile rules

C language and program execution
 • Review: standard types, operators, functions, scope, parameters,

strings, etc.
• Extended integer types (int32_t, uint64_t)
• Standard I/O library and streams: stdin, stdout, fopen, fread, scanf,

printf, etc.
• POSIX libraries – wrappers for system calls

• POSIX-layer I/O: open, read, write, etc.
• Relationship between C standard library, POSIX library functions, and system calls

• Error handling - error codes and errno
• Process address space and memory map (code, static data, heap,

stack)
• Object lifetimes: static, automatic, dynamic (heap)
• Stack and function calls – what happens during function call, return

• Function parameters
• Call by value semantics (including structs, pointers)
• Arrays as parameters - pointers
• Using pointers for call-by-reference semantics
• Function pointers as parameters

More C
• Pointers, pointers, pointers - &, *, and all that

• Typing rules and pointer arithmetic (what does p+1 mean?)
• Relationship between pointers and arrays, a[i] and pointer arithmetic
• String constants, arrays of characters, C string library
• Using void* as a “generic” pointer type
• Casting
• Dynamic allocation (malloc, free)
• Potential bugs – memory leaks, dangling pointers (including returning pointers

to local data), etc.
• Be able to draw and read diagrams showing storage and pointers, and be able

to trace code that manipulates these things.
• Structs – how to define and use, meaning of p->x (= (*p).x), structs

as local variables, parameters, and return values (value semantics)
vs. heap-allocated structs, struct values vs pointers to structs

• Typedef – how to define and use
• Linked data structures in C – linked lists, hash tables, etc.

C++
• Classes and modularity, namespaces

• Be able to read simple class definitions and add to them,
implement functions, trace code, etc.

• Know the difference between constructors, copy constructors, and
assignment and when these are called

• Know what a destructor is and when it gets called

• Other basic differences from C
• Simpler, type-safe stream I/O (cout, cin, << and >>)
• Type-safe memory management (new, delete, delete[])
• References – particularly reference parameters
• More pervasive use of const (const data and parameters, const

member functions)

Questions (?)

	CSE 333 – Section 4
	Types of Questions
	Type 1 example
	Type 2 example
	Type 3 example
	Things to watch for
	General program organization and where C fits in the ecosystem�
	C language and program execution�
	More C
	C++
	Questions (?)

