
CSE 333 – SECTION 2
POSIX I/O Functions

Overview
• STDIO vs. POSIX Functions
• Errors and Error codes
• UNIX System I/O calls
• Example program
• Section Exercise

STDIO vs. POSIX Functions
• User mode vs. Kernel mode.
• STDIO library functions – fopen, fread, fwrite, fclose, etc.

with FILE* pointers.
• POSIX functions – open, read, write, close, etc. with

integer file descriptors.
• POSIX file descriptors: Input – 0; Output – 1; Error – 2.
• FDs – index for an entry in a table with details of open

files.

Why learn these functions?
• They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.
• There is no equivalent of fread/fwrite for network and

other I/O devices.
• More explicit control since read and write functions are

system calls and you can directly access system
resources.

Errors
• When an error occurs, the error number is stored in

“errno”, which is defined under errno.h
• View/Print details of the error using perror() and errno.
• POSIX functions have a variety of error codes to

represent different errors.

System I/O calls
• Opening a file
#include <sys/file.h> //can be replaced by <fcntl.h>
int open(char* filename, int flags, int mode);

Returns an integer which is the file descriptor.
Returns -1 if there is a failure.

filename: A string representing the name of the file.
flags: An integer code describing the access.
 O_RDONLY -- opens file for read only
 O_WRONLY – opens file for write only
 O_RDWR – opens file for reading and writing
 O_APPEND --- opens the file for appending
 O_CREAT -- creates the file if it does not exist
mode: File protection mode. Ignored if O_CREAT is not specified.

System calls continued
• Reading from a file.
#include <sys/types.h> // or #include <unistd.h>
size_t read(int fd, char *buffer, size_t bytes);

fd: file descriptor.
buffer: address of a memory area into which the data is read.
bytes: the maximum amount of data to read from the stream.
The return value is the actual amount of data read from the file.

• Writing to a file
size_t write(int fd, char *buffer, size_t bytes);

• Closing a file
int close(int fd);

Error codes for read errors
• EBADF - fd is not a valid file descriptor or is not open for

reading.
• EFAULT - buf is outside your accessible address space.
• EINTR - The call was interrupted by a signal before any

data was read.
• EISDIR - fd refers to a directory.

System calls continued
• Accessing directories.
 Header file: #include <sys/dir.h>
• Opening a directory.
 DIR *opendir(char* dir_name);
• Opens a directory given by dir_name and provides a

pointer DIR* to access files within the directory.

System calls continued
• Reading a directory file.
int readdir_r(DIR *dirp, struct dirent *entry, struct
dirent **result);
• returns 0 on success.
• A NULL pointer is returned in *result when the end of the directory is

reached.

struct dirent {
 u_long d_ino; /* i-node number for the dir entry */
 u_short d_reclen; /* length of this record */
 off_t d_off ; /* offset to the next dirent*/
 unsigned char d_type; /* type of file; not supported
by all file system types */
 char d_name[MAXNAMLEN+1] ; /* directory entry name */
};

Reading N bytes from a file
#include <errno.h>
#include <unistd.h>
...

char *buf = ...;
int bytes_read = 0;
int result = 0;
while (bytes_read < N) {
 result = read(fd, buf + bytes_read, N - bytes_read);
 if (result == -1) {
 if (errno != EINTR)) {
 // a real error happened, return an error result
 }
 // EINTR happened, do nothing and loop back around
 continue;
 }
 bytes_read += result;
}
buf[N] = '\0';

Section Exercise
• Find a partner if you wish.
• Write a C program that does the following

• Given a command line argument, if it is an ordinary file, print its
contents to stdout.

• If not, or some other error occurs, print an informative error
message using perror().

• Similar to cat.
• You must use the POSIX functions to open, close, read and write.

	CSE 333 – Section 2
	Overview
	STDIO vs. POSIX Functions
	Why learn these functions?
	Errors
	System I/O calls
	System calls continued
	Error codes for read errors
	System calls continued
	System calls continued
	Reading N bytes from a file
	Section Exercise

