/* * Copyright 2011 Steven Gribble * * This file is the solution to an exercise problem posed during * one of the UW CSE 333 lectures (333exercises). * * 333exercises is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * 333exercises is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 333exercises. If not, see . */ // Lecture 4 exercise 1 // Write and test a program that defines: // - a new structured type Point // - represent it with floats for the x, y coordinate // - a new structured type Rectangle // - assume its sides are parallel to the x-axis and y-axis // - represent it with the bottom-left and top-right Points // - a function that computes/returns the area of a Rectangle // - a function that tests whether a Point is in a Rectangle #include // needed for assert() // let's use typedef to declare that "Point" is a new // type, and that the meaning of a "Point" is the same // as "struct Point_st { float x; float y; }" typedef struct Point_st { float x; float y; } Point; // let's use typedef to declare that "Rectangle" is a new // type, and that the meaning of a "Rectangle" is the same as // "struct Rectangle_st { Point bottom_left; Point bottom_right; }" typedef struct Rectangle_st { Point bottom_left; Point top_right; } Rectangle; // Declare a function prototype for RectangleArea. We'll // define the function somewhere below main(). // // Arguments: rect is the Rectangle whose area we'll compute. // Returns: the area of the rectangle, or -1.0 on error (i.e., // the rectangle is ill-formed). float RectangleArea(Rectangle rect); // Declare a function prototype for PointInRect. We'll // define the function somwhere below main(). // // Arguments: rect is a Rectangle, p is a Point. // Returns: 1 if the point is in the Rectangle, 0 if // the point is not in the Rectangle, -1 if // the Rectangle is ill-formed. int PointInRect(Rectangle rect, Point p); // Here's a helper function that we use to make sure // a rectangle is well-formed. // // Returns 1 if the rectangle is well-formed, 0 otherwise. int IsRectSensible(Rectangle rect); // Here's a helper function that tests for approximate // equality of two floats. #define EPSILON 0.00000001 int FloatEqualEpsilon(float x, float y); // we'll write some test code in main. int main(int argc, char **argv) { Rectangle bad_rect, line_rect, point_rect, good_rect; Point outside, border, inside; // make bad_rect's bottom_left be above and right of top_right bad_rect = (Rectangle) { {1, 1}, {0.1, 0.1} }; // make line_rect be a line line_rect = (Rectangle) { {0.1, 0.1}, {0.1, 1} }; // make zero_rect be a point point_rect = (Rectangle) { {0.1, 0.1}, {0.1, 0.1} }; // make good_rect be nice good_rect = (Rectangle) { {0.1, 0.1}, {1, 1}}; outside = (Point) {0, 0}; border = (Point) {0.1, 0.5}; inside = (Point) {0.5, 0.5}; // our tests of the helper function assert(IsRectSensible(good_rect)); assert(IsRectSensible(point_rect)); assert(IsRectSensible(line_rect)); assert(!IsRectSensible(bad_rect)); // Our tests of RectangleArea. Nasty issue: never // test a float for precise equality, since floats // are approximate representations. Need to write our // own comparator that tests for a difference < epsilon. assert(FloatEqualEpsilon(RectangleArea(good_rect), 0.81)); assert(FloatEqualEpsilon(RectangleArea(line_rect), 0.0)); assert(FloatEqualEpsilon(RectangleArea(point_rect), 0.0)); assert(FloatEqualEpsilon(RectangleArea(bad_rect), -1)); // our tests of PointInRect assert(PointInRect(good_rect, inside)); assert(PointInRect(good_rect, border)); assert(PointInRect(line_rect, border)); assert(!PointInRect(good_rect, outside)); return 0; } float RectangleArea(Rectangle rect) { float area; // let's make sure that rect (which is passed-by-value, // i.e., is a copy) is sensible. if (!IsRectSensible(rect)) return -1; // area is length * width area = (rect.top_right.x - rect.bottom_left.x) * (rect.top_right.y - rect.bottom_left.y); assert(area >= 0.0); return area; } int PointInRect(Rectangle rect, Point p) { // let's make sure that rect is sensible. if (!IsRectSensible(rect)) return -1; // check the x-axis if (p.x < rect.bottom_left.x) return 0; if (p.x > rect.top_right.x) return 0; // check the y-axis if (p.y < rect.bottom_left.y) return 0; if (p.y > rect.top_right.y) return 0; // it's in! return 1; } int IsRectSensible(Rectangle rect) { // make sure the bottom_left field is actually // below and to the left of the top_right field. // (it's also OK if they are precisely the same // point -- that's a zero-area rectangle.) if (rect.bottom_left.x > rect.top_right.x) return 0; if (rect.bottom_left.y > rect.top_right.y) return 0; return 1; } int FloatEqualEpsilon(float x, float y) { if (x > y) { if (x - y < EPSILON) return 1; return 0; } if (y - x < EPSILON) return 1; return 0; }