
 CSE 333 Final Exam Sample Solution 6/12/13

 Page 1 of 13

Question 1. (18 points) A little C++ hacking. On the following page, implement

function intersect. The input to the function is two lists of strings that are sorted in

ascending order and do not contain duplicates. The function should replace the original

contents of the output list with copies of all the strings that appear in both of the original

lists, and the words should appear in the output list in the same sorted order they were

found in the original lists.

For example, if we initially have

 list<string> fruit = {"apple", "banana", "cherry", "lemon",

 "mango", "orange", "watermelon"};

 list<string> citrus = {"grapefruit","lemon","lime","orange"};

 list<string> result = {"asparagus", "broccoli"};

then after the function call intersect(fruit, citrus, &result), the list

result should contain {"lemon", "orange"}.

For full credit, your function must scan the input lists only once, i.e., it should run in

linear time proportional to the lengths of the input lists.

Hints and reference information:

 Remember that a STL list is a linked list underneath, so you must use iterators

to scan it; you can’t use [] subscripts to access individual list elements.

 If lst is a STL list, then lst.begin() and lst.end() return iterator

values of type list<…>::iterator that might be useful.

 If it is an iterator, then *it can be used to reference the item it currently points

to, and ++it will advance it to the next item, if any.

 Some useful operations on sequential STL containers, including list:

o c.clear() – remove all elements from c

o c.size() – return number of elements in c

o c.empty() – true if number of elements in c is 0, otherwise false

o c.push_back(x) – copy x to end of c

o c.push_front(x) – copy x to front of c

Note for the curious: this problem deliberately avoided using templates because they

introduce some technical complications in variable declarations that seemed best omitted.

(write your answer on the next page – you may remove this page from the exam if you

wish)

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 2 of 13

Question 1. (cont.) Complete the definition of function intersect below. Some

useful #include directives as well as a using directive have been provided for

convenience. You should add any additional libraries or code that you need (although the

sample solution only needed the ones given here).

#include <string>

#include <iostream>

#include <list>

using namespace std;

// replace previous contents of ans with list of elements

// that appear in both lst1 and lst2.

// pre: lst1 and lst2 elements are sorted in ascending

// order and the lists contain no duplicates.

void intersect(const list<string> &lst1,

 const list<string> &lst2,

 list<string> *ans) {

 ans->clear();

 auto it1 = lst1.begin(); // or list<string>::iterator it1 = ...

 auto it2 = lst2.begin();

 while (it1 != lst1.end() && it2 != lst2.end()) {

 // both iterators point to valid list items. If items

 // are equal, copy one to ans and advance both

 // iterators. Otherwise skip past smallest item.

 if (*it1 == *it2) {

 ans->push_back(*it1);

 ++it1;

 ++it2;

 } else if (*it1 < *it2) {

 ++it1;

 } else { // *it1 > *it2

 ++ it2;

 }

 }

}

[Grading note: We forgot to restrict the problem to forbid the use of additional data

besides simple scalar variables. So we did not deduct points from solutions that

used additional containers provided the running time was still O(n) – even though

the problem can be solved without needing extra space proportional to the size of

the data.]

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 3 of 13

Question 2. (12 points) A debugging exercise. Below, and continued on the next page is

the valgrind output from a test run of the searchshell program from homework 2.

Although the code seems to “work” in that it produces the right answer(s), the valgrind

output suggests there are problems. What seems to be wrong and what is the evidence

for your conclusions?

There are two problems:

1) The “invalid write” messages indicate that the program is writing 1 byte past the

end of blocks of allocated memory. A common cause of this is failing to allocate an

extra byte for the ‘\0’ terminator at the end of a string, which was, in fact, one of the

errors introduced into the program to produce this valgrind output. But the

messages could have been caused by other off-by-one errors.

2) The error messages in the heap summary at the end indicate that blocks of

memory allocated by AllocateHashTable using malloc were never freed.

In grading this problem we were most interested in whether you showed good

understanding of what the valgrind output actually reported and could relate that

to plausible things to look for in the code, not whether you precisely diagnosed the

exact error. However it wasn’t enough just to say, e.g., “there is a memory leak” or

otherwise paraphrase the valgrind output – a more specific diagnosis was needed.

bash-4.2$ valgrind --leak-check=full ./searchshell test_tree/enron_email/

==10186== Memcheck, a memory error detector

==10186== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==10186== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==10186== Command: ./searchshell test_tree/enron_email/

==10186==

Indexing 'test_tree/enron_email/'

==10186== Invalid write of size 1

==10186== at 0x4A09440: strncpy (mc_replace_strmem.c:476)

==10186== by 0x401733: DTRegisterDocumentName (doctable.c:77)

==10186== by 0x401495: HandleFile (filecrawler.c:181)

==10186== by 0x4013D8: HandleDir (filecrawler.c:147)

==10186== by 0x4011BA: CrawlFileTree (filecrawler.c:77)

==10186== by 0x400C60: main (searchshell.c:46)

==10186== Address 0x4c8d3ca is 0 bytes after a block of size 26 alloc'd

==10186== at 0x4A0881C: malloc (vg_replace_malloc.c:270)

==10186== by 0x401705: DTRegisterDocumentName (doctable.c:75)

==10186== by 0x401495: HandleFile (filecrawler.c:181)

==10186== by 0x4013D8: HandleDir (filecrawler.c:147)

==10186== by 0x4011BA: CrawlFileTree (filecrawler.c:77)

==10186== by 0x400C60: main (searchshell.c:46)

==10186==

(valgrind output continued on the next page)

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 4 of 13

Question 2. (cont.) Remainder of the valgrind output.

==10186== Invalid read of size 1

==10186== at 0x4A09194: strlen (mc_replace_strmem.c:403)

==10186== by 0x401851: DTRegisterDocumentName (doctable.c:106)

==10186== by 0x401495: HandleFile (filecrawler.c:181)

==10186== by 0x4013D8: HandleDir (filecrawler.c:147)

==10186== by 0x4011BA: CrawlFileTree (filecrawler.c:77)

==10186== by 0x400C60: main (searchshell.c:46)

==10186== Address 0x4c8d3ca is 0 bytes after a block of size 26 alloc'd

==10186== at 0x4A0881C: malloc (vg_replace_malloc.c:270)

==10186== by 0x401705: DTRegisterDocumentName (doctable.c:75)

==10186== by 0x401495: HandleFile (filecrawler.c:181)

==10186== by 0x4013D8: HandleDir (filecrawler.c:147)

==10186== by 0x4011BA: CrawlFileTree (filecrawler.c:77)

==10186== by 0x400C60: main (searchshell.c:46)

==10186==

enter query:

xyzzy

enter query:

==10186==

==10186== HEAP SUMMARY:

==10186== in use at exit: 178,112 bytes in 7,980 blocks

==10186== total heap usage: 2,733,651 allocs, 2,725,671 frees, 57,300,024 bytes allocated

==10186==

==10186== 80,216 (24 direct, 80,192 indirect) bytes in 1 blocks are definitely lost in loss record

11 of 12

==10186== at 0x4A0881C: malloc (vg_replace_malloc.c:270)

==10186== by 0x4035FF: AllocateHashTable (HashTable.c:55)

==10186== by 0x4015E0: AllocateDocTable (doctable.c:42)

==10186== by 0x401130: CrawlFileTree (filecrawler.c:71)

==10186== by 0x400C60: main (searchshell.c:46)

==10186==

==10186== 97,896 (24 direct, 97,872 indirect) bytes in 1 blocks are definitely lost in loss record

12 of 12

==10186== at 0x4A0881C: malloc (vg_replace_malloc.c:270)

==10186== by 0x4035FF: AllocateHashTable (HashTable.c:55)

==10186== by 0x4015CF: AllocateDocTable (doctable.c:41)

==10186== by 0x401130: CrawlFileTree (filecrawler.c:71)

==10186== by 0x400C60: main (searchshell.c:46)

==10186==

==10186== LEAK SUMMARY:

==10186== definitely lost: 48 bytes in 2 blocks

==10186== indirectly lost: 178,064 bytes in 7,978 blocks

==10186== possibly lost: 0 bytes in 0 blocks

==10186== still reachable: 0 bytes in 0 blocks

==10186== suppressed: 0 bytes in 0 blocks

==10186==

==10186== For counts of detected and suppressed errors, rerun with: -v

==10186== ERROR SUMMARY: 1978 errors from 4 contexts (suppressed: 2 from 2)

bash-4.2$

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 5 of 13

Question 3. (16 points) Virtual madness. Consider the following program, which

compiles and executes without errors.

(See the rest of the question on the next page. You may remove this page for reference.)

#include <iostream>

using namespace std;

class Uno {

public:

 void first() {second();third(); cout << "Uno::first" << endl;}

 void second() { third(); cout << "Uno::second" << endl; }

 virtual void third() { cout<< "Uno::third" << endl; }

};

class Due : public Uno {

public:

 void first() { second(); cout << "Due::first" << endl; }

 virtual void fourth() {second();cout << "Due::fourth" << endl;}

};

class Tre : public Due {

public:

 void second() { first(); cout << "Tre::second" << endl; }

 virtual void third() { cout << "Tre::third" << endl; }

};

int main(void) {

 Uno * one = new Uno();

 one->first();

 cout << "-----" << endl;

 Uno * ein = new Due();

 ein->first();

 cout << "-----" << endl;

 Due * two = dynamic_cast<Due *>(ein);

 two->first();

 cout << "-----" << endl;

 Due * last = new Tre();

 last->fourth();

 /* draw diagram at this point*/

 return 0;

}

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 6 of 13

Question 3. (cont) (a) (8 points) Draw a diagram showing all of the variables, objects,

vtables, and methods they point to when execution reaches the end of main, right before

executing the return statement. Note that you can draw this diagram without tracing

execution of the method calls. The diagram only depends on the variable declarations

and object creation code (e.g., new). To save time, we’ve filled in part of the drawing,

including the first variable (one), the object and vtable it refers to, and the method bodies

for all three classes (but we haven’t included any necessary vtable pointer(s) to methods).

Variable Object Vtable Methods

(The vtables only contain entries for virtual functions. For non-virtual ones, the

compiler determines what code to call at compile time and does not use runtime

vtables to resolve function calls. Note that the pointer to the appropriate “third”

method must be the first one in the vtables for subclasses of Uno; the order is fixed.)

(b) (8 points) What does this program print when it is executed?

Uno::third

Uno::second

Uno::third

Uno::first

Uno::third

Uno::second

Uno::third

Uno::first

Uno::third

Uno::second

Due::first

Tre::third

Uno::second

Due::fourth

one

ein

two

last

Uno::first

Uno::second

Uno::third

Due::first

Tre::second

Tre::third

Due::fourth

(Uno)

(Due)

(Tre)

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 7 of 13

Question 4. (6 points) When we were exploring architectures for concurrent servers, one

of our example servers created a new process to handle each incoming request. The code

used a “double-fork” trick to create a grandchild process to actually handle each request.

A sketch of the code, with error handling omitted, looked something like this:

 // Loop forever, accepting a connection from a client and processing

 // queries arriving over it.

 while (1) {

 int client_fd = client request;

 pid_t pid = fork(); // create child process

 if (pid > 0) {

 // I'm the parent

 int stat_loc;

 pid_t res = wait(&stat_loc);

 close(client_fd);

 break; // handle next request

 } else if (pid == 0) {

 // I'm the child. Fork a grandchild and exit.

 pid = fork();

 if (pid > 0) {

 // I'm the child. Exit!

 exit(EXIT_SUCCESS);

 } else if (pid == 0) {

 // I'm the grandchild. Handle the client connection.

 HandleClient(...);

 }

 }

So the question is, why bother with all of this complexity? Why create a grandchild

process to handle the request – why not just have the child process handle it?

(Brief answers that explain key technical points succinctly make graders happy.)

The main reason is to avoid the zombie (process) apocalypse.

More technically: once a process terminates it remains in the system as a zombie

until a parent process wait()s for it. If each child process directly handled client

requests, the parent process would have to arrange to wait for those child processes,

while still handling new incoming requests. That requires extra bookkeeping to

keep track of which child processes are still running and to wait for them soon after

they terminate.

Instead, each child forks a grandchild and immediately exits, and the parent process

waits for that to happen, which will be very quick. When the grandchild later

finishes handling the request and terminates it is adopted by the system init

process, since its parent no longer exists. init immediately waits on any zombie

processes that it acquires and that cleans up the grandchild process zombie.

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 8 of 13

Question 5. (7 points) Fun with concurrency!! Consider the following C program:

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

int x = 0;

void * thread_worker(void * ignore) {

 x = x + 1;

 printf("x=%d\n", x);

 return NULL;

}

int main() {

 pthread_t t1, t2;

 int ignore;

 ignore = pthread_create(&t1, NULL, &thread_worker, NULL);

 ignore = pthread_create(&t2, NULL, &thread_worker, NULL);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 printf("final x=%d\n", x);

 return 0;

}

For each of the following output sequences, circle “yes” if it could be produced by some

possible execution of the above program and circle “no” if it could never happen under

any circumstances. (Hint: at least one of these sequences is possible.)

YES NO x=0 x=1 final x=1

YES NO x=1 x=1 final x=1

YES NO x=1 x=2 final x=1

YES NO x=1 x=1 final x=2

YES NO x=1 x=2 final x=2

YES NO x=2 x=1 final x=2

YES NO x=2 x=2 final x=2

Note that “x=x+1” involves a memory fetch, an addition, and a store; and printf

either fetches the value again, or finds a copy in a temporary location like a register

before printing. Execution can switch to another thread between any of these

events.

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 9 of 13

Some short answer questions. Please help us give you the most points by being accurate,

brief but complete, and to the point.

Question 6. (6 points) As part of opening a connection to a client, a TCP server must use

both the accept() and listen() functions. What do these two functions do, and in

what order should the server code execute them?

A server must do a listen() first to indicate that a particular socket is prepared

to accept connections on a particular port.

Once the listening socket is ready, the server uses accept()on that socket to get a

new file descriptor to use for reading and writing to each client.

Queston 7. (6 points) Most of our network programming used TCP sockets. Another

protocol built on top of IP is UDP. What is the key difference between UDP and TCP,

and what sort of applications is UDP suited for compared to TCP? (a specific example of

two and why would be helpful)

TCP creates a reliable stream channel on top of the IP datagram layer.

UDP is a thin wrapper around IP that allows a client program to send and receive

packet datagrams. There is no guarantee of reliable, in-order packet delivery as

there is with TCP.

UDP is appropriate for applications like streaming audio and video where an

occasional dropped packet is acceptable, and the overhead and latency of a reliable

TCP stream is not appropriate. However, such applications are relatively rare.

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 10 of 13

Question 8. (6 points) Suppose we have two C++ classes related by inheritance:

 class Base { … };

 class Derived : public Base { … }

The subclass, Derived, can have additional methods and fields (instance variables) in

addition to the ones it inherits from Base. In most of the code we’ve written using

inheritance, we’ve used pointers and pointer assignments such as the following:

 Derived * d = new Derived();

 Base * b = d;

But what about object value assignment? Is the following code legal (i.e., will it

compile)? What happens when it is executed, if it does compile?

 Derived dobj = ... ; // initialization omitted

 Base bobj = dobj;

Yes it is legal, but only the bytes in the “Base” part of dobj are involved in setting

the value of bobj, i.e., we use the slice of the Derived object containing only its

Base part. That will cause problems later if we expect to be able to assign the value

back to an object of type Derived, because the remaining parts of the original

object are not present in the copy.

Question 9. (6 points) There are several kinds of smart pointers in the C++ library. One

kind is weak pointers (weak_ptr). These are similar to shared_ptr, but not quite

the same. Why do we have both kinds? What problem is solved by weak_ptrs?

A shared_ptr uses reference counting to keep track of how many smart pointers

currently refer to an object. When a shared_ptr is deleted, it decrements the

reference count and, if it becomes 0, deletes the object.

The trouble is if we have a linked structure containing a cycle. If we use only

shared_ptrs, then every object in the cycle has another object pointing to it and

cannot be deleted, even if the cycle is not reachable from anywhere else.

A weak_ptr does not contribute towards an object’s reference count so it can be

used as part of a cyclical data structure, while still allowing reference counts to

eventually reach 0 once no outside references to the data exist.

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 11 of 13

Question 10. (6 points) The following function unlinks the first node from a single-

linked list and returns the pointer to that node in addition to updating the head of the list:

struct node {

 int val;

 struct node * next;

};

// remove the first node from the list starting at head and

// return a pointer to the unlinked node. Return NULL if

// the list is empty initially (head == NULL).

struct node * unlink(struct node ** head) {

 if (head == NULL)

 return NULL;

 struct node * tmp = *head;

 *head = (*head)->next;

 return tmp;

}

Are there any potential problems using this function to manage linked lists in a multi-

threaded program? If so, what might go wrong? How could we fix it?

Yes. If another thread is also adding or deleting nodes at the same time, its

operations could be interleaved with the statements in this function leading to all

sorts of potential scrambled pointer problems.

One solution would be to associate an exclusive lock with the list data structure and

require that any code that examines or alters the list structure must obtain the lock

before starting and hold the lock until it is completely done. A lock operation

should be inserted at the beginning of this function, with a corresponding unlock at

the end, right before the return statement.

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 12 of 13

Question 11. (6 points) Orders of magnitude. Circle the time that is the closest to the

typical time needed for the following operations. (msec = milliseconds, μsec =

microseconds, nsec = nanoseconds)

(a) Time for a modern laptop processor to add two numbers

 100 msec 10 msec 1 msec 100 μsec 10 μsec 1 μsec 100 nsec 10 nsec 1 nsec

(b) Time to access main (not cache) memory on a modern laptop **

 100 msec 10 msec 1 msec 100 μsec 10 μsec 1 μsec 100 nsec 10 nsec 1 nsec

(c) Time to read or write one record off of a rotating hard disk drive

 100 msec 10 msec 1 msec 100 μsec 10 μsec 1 μsec 100 nsec 10 nsec 1 nsec

**We awarded credit for either 10nsec or 100nsec for memory speed. Memory is

getting faster and access times are in the 30-40 nsec. range these days.

Question 12. (4 points) Had to ask this one. Below is the standard diagram of the

memory address space for a process. Label the boxes.

Stack

Heap

Static (global) data

Text (code)

0x00000000

0xFFFFFFFF

 CSE 333 Final Exam Sample Solution 6/12/13

 Page 13 of 13

Question 13. (1 point – circle the letter of your choice)

The best thing about C++ is:

(a) simple stream I/O (cout/cin instead of printf/scanf)

(b) type-safe new and delete operators

(c) it still requires manual memory management and it’s possible to have dangling

pointers, memory leaks, and all the other goodies – none of that wimpy garbage

collection stuff.

(d) references as well as pointers

(e) smart pointers – not just the old, dumb ones

(f) a much bigger library (STL, collections, iterators, etc.)

(g) classes and objects

(h) dynamic and static method dispatch

(i) destructors

(j) multiple inheritance

(k) operator overloading

(l) the many meanings of const

(m) the many meanings of static

(n) templates

(o) function overloading

(p) namespaces

(q) You forgot the best one!! It’s really ____________________________________ !!!

(r) It’s all great!!!!!!!!!!!!

(s) C++ is the most loathsome programming language ever invented. There’s nothing

good about it except that maybe by knowing it I’ll be able to get a job at Google. Even

then I hope never to see it again.

(t) I don’t care – just give me my free point

(u) I do care, but don’t have time to think about it – just give me my free point

All answers received a point.

