CSE 333 Systems Programming
Quiz 2 Solution

Name: John Zahorjan

Professor: John Zahorjan

Date: Thursday, 11/21/2013

We use the term class loosely in what follows. Data type would probably be more

accurate, but it doesn’t read as well.

1. One way to build generics is to identify some lowest-common-denominator data

type and define method prototypes that rely only on that type. (For example,
in C/C++C we use void*; in Java we use Object.) Circle the most important
limitation of this approach that motivates doing something more sophisticated
(like templates).

(A) There may be some classes that aren’t subclasses of the assumed lowest-
common-denominator class, and we therefore can’t use the generic imple-
mentations with them.

(B) There’s no way for the generic library to do anything more with the objects
it given than store them.

(C) There is a way to allow the library to do more than just store the objects,
but it’s clumsy to use.

Solution: (C)

Callbacks provide a method for the library routine to defer type specific oper-
ations to caller-supplied methods. Anything beyond very simple manipulations
may require many, small, callback functions to be defined and passed, though.

. Indicate whether each statement below is true or false for C++ templates.

(A) Every templated method can operate on any class.
(B) A library based on templates must be distributed as source code.

(C) Templated methods are likely to be much slower than equivalent methods
based on some common base class.

(D) Template libraries can lead to much larger executables (in terms of the
amount of main memory required to run efficiently) than equivalent li-
braries based on some common base class.

(E) It’s much easier to understand the conditions under which a non-templated
library routine functions correctly than it is to understand when a tem-
plated method functions correctly.

Solution:

(A) False. If the template performs any operation on the object (e.g., copy),
the object must support it.

(B) True. The template code is compiled at the same time as the calling code.

(C) False. Templates specialize the implementation to a class, potentially al-
lowing discovery of optimizations at compile time, whereas the base class
method relies on virtual methods, which are slow to invoke and impede
optimizations.

(D) True. With templates there is an instance of the library for each type it is
applied to.

(E) True. The non-templated implementation declares a type for the arqu-
ments, so you can examine the interface for that type. The templated code
gives no clue what the type might be, so you have to examine the full source
of the implementation to determine what it relies on, and even then you
may end up with only a vague idea.

. Two versions of a library method have been written. One requires argument
objects to be from subclasses of class Foo and the other uses templates. Both
versions perform assignment on the argument objects, and in each case the
author assumed that the assignment operator had its conventional meaning.
Assignment has not been overloaded in class Foo or any of its superclasses.
Unexpectedly, a client program manages to pass in an object of a class that
has redefined assignment, and that does something totally unexpected for it.
Which statement below is true?

A

(A) Both implementations break.

(B) The class based approach breaks but the template based one works.
(C)

(

C

D) Both implementations work.

The class based approach works but the templated based one breaks.

Solution: (C)

In the class based approach, the code was compiled long ago, and the generated
code uses standard semantics for assignment. The template is compiled with the
calling code, and uses the whatever assignment semantics it imposes.

. Explain briefly but convincingly why it’s not possible to compile the code below.
(Note: this is a question about templates. Answers not having to do with non-
trivial template concepts aren’t answers to this question.)

#include <iostream>

#include <list>

#include <cstdlib>
using namespace std;

template <int N>
void filter (list<int> L) {
for (int i : L) {
if (1 < N) cout << endl;
}
}

int main(int argc, char *argv[]) {
list<int> L = { 10, 20, 40, 80, 160, 320, 640, 1280};
int N = atoi(argv[1]);
filter<N>(L);
return O;

}

Solution: To expand the template into a specific realization the compiler needs
the value of N, but that value isn’t known until run time.

