
CSE 333 – SECTION 1
C Review and problems

A bit about us

• James Okada

• Undergrad, CSE.

• Contact: jyo2@uw.edu jyo2@cs.washington.edu

• Office hours: TBD

• Renshu Gu

• PhD student, Department of Electrical Engineering.

• Contact: renshugu@uw.edu

• renshugu@u.washington.edu

• Office hours: TBD

mailto:jyo2@uw.edu
mailto:jyo2@cs.Washington.edu
mailto:renshugu@uw.edu
mailto:renshugu@u.Washington.edu

Sections Format

• Some lecture material/discussion of projects.

• Try to go through examples each week pertaining

to the exercise/project and material learned in

class

• We’re likely to do exercises in section. On two or

three instances. They will be graded as a quiz,

but mostly they wont. We will let you know which

day those quizzes will be by marking them

prominently on the calendar.

Ex0/hw0

• Some suggestions for exercises
• “Good style” for this class is based on the Google Style guide, so

follow it when in doubt, later on use clint, cpplint

• Keep it short and simple– dense code with a few comments

sprinkled in

• Get in to the habit of using man pages.

• Expect exercise grades/feedback prior to the next

lecture after turning them in (no promises!)

Structs

• Used for encapsulating data

• Can contain primitive types (int, double, etc.),

arrays, other structs, and unions, among other

types

• Accesses are made through the ‘->’ operator for

pointers to structs and ‘.’ for values.

• More on this later;.

Structs

• Example

struct Sample {

 int a, b;

};

int main(int argc, char* argv[]) {

 struct Sample s;

 s.a = 10;

 s.b = 5;

 struct Sample *s_ptr = &s;

 printf(“s.a is %d and s.b is %d\n”, s.a, s.b);

 printf(“s_ptr->a is %d and s_ptr->b is %d\n”, s.a, s.b);

 return 0;

}

Arrays

• Just a block of data of a particular type and size

• Raw pointers can be treated as arrays and vice versa, with some
minor caveats

• Pointer variables can be treated as arrays but, don’t forgot to allocate
space for the array!

int* a = (int*) malloc(sizeof(int) * 3);

int* b = (int*) malloc(sizeof(int));

Int c[5] = {0}; // stack allocated array

a[2] = 6;

b[0] = 4;

c[2] = 2;

*a = c[2]; // what does this do?

free(a);

free(b);

Quick Example!

• Lets do a quick example to recap what we learned!

