
CSE 333
Lecture 18 -- server sockets

Today

Network programming

- server-side programming

Servers

Pretty similar to clients, but with additional steps

- there are seven steps:

1. figure out the address and port on which to listen

2. create a socket

3. bind the socket to the address and port on which to listen

4. indicate that the socket is a listening socket

5. accept a connection from a client

6. read and write to that connection

7. close the connection

Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.

Step 2. Create a socket.

Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.

Servers

Servers can have multiple IP addresses

- “multihomed”

- usually have at least one externally visible IP address, as

well as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

‣ by specifying the address “INADDR_ANY” -- 0.0.0.0

- specify that it should listen on a particular address

bind()

The “bind()” system call associates with a socket:

- an address family

‣ AF_INET: IPv4

‣ AF_INET6: IPv6

- a local IP address

‣ the special IP address INADDR_ANY (“0.0.0.0”) means “all local

IPv4 addresses of this host”

‣ use in6addr_any (instead of INADDR_ANY) for IPv6

- a local port number

listen()

The “listen()” system call tells the OS that the socket is

a listening socket to which clients can connect

- you also tell the OS how many pending connections it

should queue before it starts to refuse new connections

‣ you pick up a pending connection with “accept()”

- when listen returns, remote clients can start connecting to

your listening socket

‣ you need to “accept()” those connections to start using them

Server socket, bind, listen

see server_bind_listen.cc

Accepting a connection from a client

Step 5. accept() a connection from a client.

Step 6. read() and write() to the client.

Step 7. close() the connection.

accept()

The “accept()” system call waits for an incoming

connection, or pulls one off the pending queue

- it returns an active, ready-to-use socket file descriptor

connected to a client

- it returns address information about the peer

‣ use inet_ntop() to get the client’s printable IP address

‣ use getnameinfo() to do a reverse DNS lookup on the client

Server accept, read/write, close

see server_accept_rw_close.cc

Something to note...

Our server code is not concurrent

- single thread of execution

- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the

connection

A crowd of clients is, by nature, concurrent

- while our server is handling the next client, all other clients

are stuck waiting for it

