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Today

Network programming

- server-side programming

These are slightly modified versions of slides prepared by Steve Gribble



Servers

Pretty similar to clients, but with additional steps

- there are seven steps:
1. figure out the address and port on which to listen
. Create a socket
. bind the socket to the address and port on which to listen
. Indicate that the socket is a listening socket
. accept a connection from a client

. read and write to that connection
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. close the connection
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Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.
Step 2. Create a socket.
Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.
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Servers

Servers can have multiple IP addresses
- “multihomed”

- usually have at least one externally visible IP address, as
well as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

» by specifying the address “INADDR_ANY” -- 0.0.0.0

- specify that it should listen on a particular address
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bind( )

The “bind( )" system call associates with a socket:

- an address family
» AF_INET: IPv4
» AF_INET6: IPVv6

- alocal IP address

» the special IP address INADDR_ANY (“0.0.0.0) means “all local
IPv4 addresses of this host”

» use Iin6addr_any (instead of INADDR_ANY) for IPv6

- a local port number
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isten( )

The “listen( )" system call tells the OS that the socket Is
a listening socket to which clients can connect

- you also tell the OS how many pending connections it
should queue before It starts to refuse new connections

» you pick up a pending connection with “accept( )’

- when listen returns, remote clients can start connecting to
your listening socket

» you need to “accept( )" those connections to start using them
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Server socket, bind, listen

see server bind listen.cc



Accepting a connection from a client

Step 5. accept( ) a connection from a client.

Step 6. read( ) and write( ) to the client.

Step 7. close( ) the connection.

These are slightly modified versions of slides prepared by Steve Gribble



accept( )

The “accept( )" system call waits for an incoming
connection, or pulls one off the pending queue

- It returns an active, ready-to-use socket file descriptor
connected to a client

- It returns address information about the peer
» use inet_ntop( ) to get the client’s printable IP address

» use getnameinfo( ) to do a reverse DNS lookup on the client
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Server accept, read/write, close

see server_accept_rw_close.cc



Something to note...

Our server code Is not concurrent
- single thread of execution
- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the
connection

A crowd of clients Is, by nature, concurrent

- while our server Is handling the next client, all other clients
are stuck waiting for it
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