CSE 333

Lecture 18 -- server sockets

2

Today

Network programming

- server-side programming

These are slightly modified versions of slides prepared by Steve Gribble

Servers

Pretty similar to clients, but with additional steps

- there are seven steps:
1. figure out the address and port on which to listen
. Create a socket
. bind the socket to the address and port on which to listen
. Indicate that the socket is a listening socket
. accept a connection from a client

. read and write to that connection

~N O o AW DN

. close the connection

These are slightly modified versions of slides prepared by Steve Gribble

Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.
Step 2. Create a socket.
Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.

These are slightly modified versions of slides prepared by Steve Gribble

Servers

Servers can have multiple IP addresses
- “multihomed”

- usually have at least one externally visible IP address, as
well as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

» by specifying the address “INADDR_ANY” -- 0.0.0.0

- specify that it should listen on a particular address

bble

bind()

The “bind()" system call associates with a socket:

- an address family
» AF_INET: IPv4
» AF_INET6: IPVv6

- alocal IP address

» the special IP address INADDR_ANY (“0.0.0.0) means “all local
IPv4 addresses of this host”

» use Iin6addr_any (instead of INADDR_ANY) for IPv6

- a local port number

These are slightly modified versions of slides prepared by Steve Gribble

isten()

The “listen()" system call tells the OS that the socket Is
a listening socket to which clients can connect

- you also tell the OS how many pending connections it
should queue before It starts to refuse new connections

» you pick up a pending connection with “accept()’

- when listen returns, remote clients can start connecting to
your listening socket

» you need to “accept()" those connections to start using them

These are slightly modified versions of slides prepared by Steve Gribble

Server socket, bind, listen

see server bind listen.cc

Accepting a connection from a client

Step 5. accept() a connection from a client.

Step 6. read() and write() to the client.

Step 7. close() the connection.

These are slightly modified versions of slides prepared by Steve Gribble

accept()

The “accept()" system call waits for an incoming
connection, or pulls one off the pending queue

- It returns an active, ready-to-use socket file descriptor
connected to a client

- It returns address information about the peer
» use inet_ntop() to get the client’s printable IP address

» use getnameinfo() to do a reverse DNS lookup on the client

These are slightly modified versions of slides prepared by Steve Gribble

Server accept, read/write, close

see server_accept_rw_close.cc

Something to note...

Our server code Is not concurrent
- single thread of execution
- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the
connection

A crowd of clients Is, by nature, concurrent

- while our server Is handling the next client, all other clients
are stuck waiting for it

These are slightly modified versions of slides prepared by Steve Gribble

